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Observability Analysis and Optimization for Angles-Only Navigation of
Distributed Space Systems
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Angles-only navigation methods are compelling for distributed space systems (DSS) such as swarms and
constellations. However, complex dependencies between state observability and system parameters present
a challenging design problem. This paper proposes a unified angles-only observability analysis and design
framework enabling designers of a DSS to 1) analytically determine whether its orbit state is observable,
2) numerically estimate its expected navigation performance, and 3) intelligently optimize the system to
meet navigation requirements. First, a new system measurement topology representation is proposed for
which analytic orbit observability can be assessed via a set of graphical conditions. Second, methods for
numeric estimation of the achievable state covariance are augmented with auxiliary state variables, dynamics
uncertainty, and measurement availability constraints. Third, a system cost function is developed and
the topological and numeric methods are placed within a quasi-Newton optimization framework to enable
automatic system design. The optimization is applied to a distributed science swarm and a space situational
awareness constellation in lunar orbit. Both scenarios converge to a global cost minimum and output designs
that achieve user requirements under realistic measurement conditions and constraints. Combined analytic
and numeric methods therefore presents a powerful tool for design of angles-only DSS.
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1. Introduction

Angles-only methods, in which observer spacecraft
obtain bearing angles to target space objects using
on-board vision-based sensors (VBS), are compelling
for navigation of distributed space systems (DSS).
Typical DSS in Earth orbit rely on external Global
Navigation Satellite System (GNSS) measurements
for navigation, whereas DSS in deep space often em-
ploy radio localization via ground-based resources such
as the NASA Deep Space Network (DSN). However,
GNSS cannot be applied in signal-denied scenarios of
interest, and DSN usage is not easily scalable to fu-
ture distributed missions [1]. In contrast, angles-only
navigation is primarily autonomous, self-contained,
and leverages only on-board resources. Cameras are
robust, low cost, low power sensors already present on
most spacecraft, possessing high dynamic range and
small form factors conducive to accurate navigation
and spacecraft miniaturization. Cameras may also
obtain passive measurements to non-cooperative or
unidentified targets, particularly useful in space do-
main awareness (SDA). Many DSS proposals there-
fore present angles-only navigation as a central as-
pect [2–7].

As documented in literature, two flight experiments
have demonstrated angles-only navigation in orbit.
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In 2012, the Advanced Rendezvous using GPS and
Optical Navigation (ARGON) experiment enabled the
rendezvous of two smallsats in low Earth orbit (LEO)
from inter-satellite separations of 30km to 3km [8].
In 2016, the Autonomous Vision Approach Naviga-
tion and Target Identification (AVANTI) experiment
similarly conducted a rendezvous between a mother-
ship smallsat and deployed picosatellite from separa-
tions of 13km to 50m [6]. More recently, Stanford’s
Space Rendezvous Laboratory has developed the Ab-
solute and Relative Trajectory Measurement System
(ARTMS) [3, 9]. ARTMS is a self-contained soft-
ware payload that provides distributed, autonomous
angles-only navigation for DSS orbiting an arbitrary
central body. ARTMS will be flight tested in 2022
as part of the NASA Starling mission, a swarm tech-
nology demonstration consisting of four CubeSats in
LEO [5]. Usage of ARTMS in lunar and Martian or-
bits has also been studied [4, 10].

A key design challenge for angles-only navigation
is weak observability of target range. Bearing angles
do not provide explicit range information and mul-
tiple cooperative observers in a system are necessary
to achieve complete state observability and long-term
convergence [3,11–13]. System properties such as or-
bit geometry, sensor quality, measurement availabil-
ity and communication topology can affect observ-
ability significantly and unpredictably. Angles-only
observability has therefore been extensively studied.

1



2. Background

Existing results can be broadly categorized into four
areas: treatment of two- or three-spacecraft systems
[11, 12, 14] or larger systems [4, 10, 13, 15], and us-
age of analytic observability methods [12–14] such
as Lie derivatives or numeric observability methods
[4, 10, 11, 15] such as covariance estimation. Despite
this, comparatively little attention has been paid to
how angles-only systems may be practically designed
to achieve required navigation performance for a sce-
nario. If ARTMS or similar architectures are to be
applied to future missions, it is necessary to 1) deter-
mine whether complete observability can be achieved
using angles-only measurements in the desired sce-
nario; 2) given a system configuration, compute ex-
pected navigation performance and assess whether re-
quirements are met; 3) intelligently design a system
and optimize its parameters to achieve navigation re-
quirements at minimal cost. Although some authors
have applied optimization techniques to broader space-
craft or mission design [16], explicit navigation con-
straints are often untreated and have not been stud-
ied in this context. Furthermore, prior analytic and
numeric results have not addressed several critical
design aspects, including partial or non-global mea-
surement availability [12]; dynamics model uncertain-
ties [11]; and consistency of observability across vary-
ing topologies, geometries, and state variables.

In response, this paper constructs a new, unified
angles-only observability analysis and design frame-
work from three interrelated components: analytic
observability analysis, numeric observability analy-
sis, and design optimization. First, a modified graph
topology representation is introduced for DSS. For
a more realistic treatment of distribution, the topol-
ogy does not assume global measurement availabil-
ity and adopts weighted and self-loop edges to bet-
ter characterize the flow of measurement information.
Sufficient conditions to ensure analytic graph observ-
ability are provided by applying prior Lie derivative
results to the new topology. Second, a modified nu-
meric method for observability analysis is presented.
Measurement sensitivity and noise matrices are used
to estimate achievable state uncertainty from a simu-
lated measurement batch. Added aspects include the
effects of dynamics uncertainty, partial target visibil-
ity, and auxiliary state estimation. The numeric me-
thod is used to validate the topological conditions.
Third, an optimization framework is fused with the
analytic and numeric approaches. A quadratic ob-
jective function is developed to balance navigation
performance (as computed via the above methods)
with overall system costs. Quasi-Newton methods

are applied to minimize the objective and automatic
optimization is explored for two case studies in lunar
orbit: a distributed science swarm and an SSA con-
stellation. More generally, by combining these tools,
designers are able to quickly determine whether a
system is observable, estimate expected navigation
performance, and intelligently optimize it to fulfil re-
quirements.

Following this introduction, Section 2 introduces
relevant mathematical modeling. Section 3 presents a
graph topology representation for DSS and sufficient
topological conditions for orbit observability. Section
4 presents numeric methods for system observability
analysis and associated results. Section 5 presents an
optimization framework for angles-only observability
and its application to two case studies. Section 6
concludes the paper.

2. Background

2.1 Terminology

A DSS consists of all resident space objects (RSO)
whose states are to be estimated. ‘Active’ objects are
observer spacecraft with an onboard VBS which ac-
tively obtain measurements and perform navigation,
whereas ‘passive’ objects do not perform navigation
but may be tracked by active observers. To enable co-
operative navigation, observers broadcast their abso-
lute orbit estimate and bearing angle measurements
to other observers over an inter-satellite link (ISL).
Each observer is therefore in contact with a set of
‘remote’ ISL observers and has access to remote mea-
surements of system objects.

Navigation is decentralized in that each observer
only estimates the states of those RSO in its ‘subsys-
tem’. A subsystem consists of the ‘local’ observer, all
targets visible to its VBS, and remote observers which
1) share a target with the local observer; 2) are a tar-
get of the local observer; 3) are measuring the local
observer; or 4) are measuring a remote observer which
fulfils conditions 1), 2) or 3). In this fashion, global
communication is not required and observers only
process measurement information relevant to them-
selves or their visible targets. Furthermore, measure-
ment and navigation tasks are distributed to both
improve DSS coverage and reduce on-board compu-
tation costs.

‘Beacon’ objects are able to observe their own ab-
solute orbit, either via ‘external’ measurement sources
such as GNSS or ‘internal’ measurement sources such
as inter-satellite bearing angles. Figure 1 presents a
notional illustration of these terms.

2



2.2 Coordinate Frames

Fig. 1: An illustration of a four-member subsystem
with two active observers and two passive RSO.

2.2 Coordinate Frames

Spacecraft states are modeled in an inertial refer-
ence frame centered on an arbitrary central body, de-
noted I (commonly a planet-centered, moon-centered
or Sun-centered frame). Two rotating frames are also
defined. First, consider the radial/along-track/cross-
track (RTN) frame of an observer spacecraft, denoted
R. It is centered on and rotates with the observer
and consists of orthogonal basis vectors x̂R (directed
along the observer’s absolute position vector); ẑR

(directed along the observer’s orbital angular mo-
mentum vector); and ŷR = ẑR × x̂R [17]. Simi-
larly, define a frame W using ŷW (directed along the
observer’s velocity vector); ẑW = ẑR; and x̂W =
ŷW× ẑW . W only differs from R by a rotation of the
observer flight path angle ϕf about ẑR with ϕf ≈ 0
in near-circular orbits [17]. Finally, define the ob-
server VBS coordinate frame, consisting of orthogo-
nal basis vectors x̂V , ŷV , ẑV where ẑV = x̂V × ŷV is
aligned with the camera boresight. The VBS may be
pointed as necessary to keep targets in the field of
view (FOV). Figure 2 provides an example.

2.3 System State

The absolute orbit α of an observer can be para-
metrized by quasi-nonsingular orbit elements (OE),
with

α =
[
a ex ey i Ω u

]⊤
=

[
a e cosω e sinω i Ω ω +M

]⊤ [1]

Above, a, e, i,Ω, ω, and M are the canonical Keple-
rian OE of semi-major axis, eccentricity, inclination,
right ascension of the ascending node, argument of
periapsis, and mean anomaly respectively, and u is

Fig. 2: Definition of V,R andW with the VBS point-
ing in the anti-velocity direction. Bearing angles
[α, ϵ] are shown for target line-of-sight vector δrV .

the mean argument of latitude. All are defined with
respect to I. Fully nonsingular OE [17] can be used
for equatorial orbits. Absolute orbits can be equiv-
alently expressed in Cartesian form xI with compo-
nents

xI =

[
rI

vI

]
= [rx, ry, rz, vx, vy, vz]

⊤ [2]

where r is position and v is velocity.
Relative orbits δα of targets with respect to an

observer can be parametrized by quasi-nonsingular
relative orbit elements (ROE) [18]. The ROE are
defined in terms of the OE of the observer and target
(denoted by subscripts ‘o’ and ‘t’ respectively) via

δα =
[
δa δλ δex δey δix δiy

]⊤

=


δa
δλ

|δe| cosϕ
|δe| sinϕ
|δi| cos θ
|δi| sin θ

 =


(at − ao)/ao

(ut − uo) + (Ωt − Ωo) cos io
ex,t − ex,o
ey,t − ey,o
it − io

(Ωt − Ωo) sin io


[3]

Above, δa is the relative semi-major axis, δλ is the
relative mean longitude, δe = (δex, δey) is the rela-
tive eccentricity vector with magnitude δe and phase
ϕ, and δi = (δix, δiy) is the relative inclination vec-
tor with magnitude δi and phase θ. Fully nonsingular
ROE have been defined for equatorial orbits [19].

Estimation of auxiliary state components can pro-
vide additional robustness and autonomy. States may
include the absolute clock offset and drift rate of an
observer, cerr, and its differential clock parameters
with respect to other observers, δcerr, denoted as

cerr =

(
cerr
derr

)
δcerr =

(
δcerr
δderr

)
= cerr,t − cerr,o [4]
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2.4 Measurement Model

Above, cerr is a clock offset and derr is a drift rate.
The absolute ballistic coefficients of an object, B, and
differential ballistic coefficients of its targets, δB, can
also be estimated, denoted as

B =

(
Batm

Bsrp

)
δB =

(
δBatm

δBsrp

)
= Bt −Bo [5]

where subscripts ‘atm’ and ‘srp’ refer to atmospheric
drag and solar radiation pressure (SRP) respectively.
Finally, VBS measurement biases of observers can be
estimated, denoted as b = [bα, bϵ]

T .
Consider a system of No active observers and Np

passive objects. The system absolute orbit state is

xα = [α1,α2, ...,αNo+Np ] [6]

The system absolute auxiliary state vector is

xaux = [c1, ..., cNo ,B1, ...,BNo+Np , b1, ..., bNo ] [7]

Consider the subsystem of an observer i which con-
tainsN i

c cooperative remote observers andN i
p passive

target objects. The subsystem orbit state vector is

xα = [αi, δα1, δα2, ..., δαNi
c+Ni

p
] [8]

The subsystem auxiliary state vector is

xaux = [ci, δc1, δc2, ..., δcNi
c
,

Bi, δB1, δB2, ..., δBNi
c+Ni

p
,

b1, b2, ..., bNi
c+1]

[9]

2.4 Measurement Model

Bearing angles consist of azimuth and elevation
[α, ϵ] and subtend the line-of-sight vector δrV from
the observer to the target. The measurement model y
for the bearing angles from spacecraft i to spacecraft
j is described by [3]

δrVji = rVj − rVi = [δrVx , δr
V
y , δr

V
z ]

⊤ [10]

yV
ji(x) =

[
α
ϵ

]V
=

[
arcsin δrVy /||δrVji||2
arctan δrVx /δr

V
z

]
[11]

Figure 2 depicts the measurement model. Bearing an-
gles are related to the inertial frame by rotating δrV

into I, as per δrI = V−→RIδrV where V−→RI denotes a
rotation from frame V into frame I. This rotation is
generally computed by performing attitude determi-
nation using stars identified by the VBS [8]. Other

relevant rotations R−→RI and W−→RI can be computed
using the observer’s absolute orbit estimate.

There is an equivalence between bearing angles
and the measured unit vector from observer to tar-
get [13]. The measurement model z for the inertial
unit vector from spacecraft i to spacecraft j is

zI
ji(x) =

δrIj − rIi
||rIj − rIi ||2

=
δrIji
δrIji

[12]

In practice, the model is affected by optical vis-
ibility including eclipse periods, sun-blinding of the
camera, visual magnitude of the target, and limited
camera FOV. When required, visual magnitudes are
computed using a model [20] that accounts for surface
properties, solar phase angle and albedo.

Spacecraft may also be able to obtain absolute po-
sition and velocity information via GNSS, the DSN,
or inter-satellite sharing of state estimates. In I, the
measurement of the absolute state of spacecraft i is

zI
i (x) =

[
rIi
vI
i

]
[13]

2.5 Dynamics Model

The dynamics model for each object’s Cartesian
state, using Keplerian dynamics, is [17]

ẋi = f(x) =

[
ṙIi
r̈Ii

]
=

[
vI
i

−µrIi /||rIi ||32

]
[14]

for gravitational parameter µ of the central body. Or-
bits are also affected by perturbing forces including
spherical harmonic gravity, atmospheric drag, third-
body gravity and SRP. To include these effects, the
osculating OE of each spacecraft can be propagated
using numerical integration of the Gauss Variational
Equations (GVE). For orbit state α, the osculat-
ing OE of each spacecraft evolve according to α̇ =
G(α)dR where G ∈ R6×3 is the well-documented
GVE matrix [21] and dR is the perturbing acceler-
ation expressed in R. Maneuvers also affect space-
craft orbits and typically improve observability if ma-
neuver parameters are known to the observer [14].
This research assumes maneuvers are not performed.
Analytic models for mean OE and ROE which in-
clude effects of J2, SRP, differential drag and other
perturbations have also been developed and can be
applied when computational efficiency is paramount
[19,22,23].

Spacecraft clock states evolve according to a dis-
crete time random walk process [24] defined by

ctk = Φcctk−1
+N (0,Σc)

Φc =

[
1 Ts

0 1

]
Σc =

[
q1Ts + q2

T 3
s

3 q2
T 2
s

2

q2
T 2
s

2 q2Ts

]
[15]
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3. Analytic Observability

Above, Ts is the propagation timestep between epochs
tk and tk−1; N is a normal distribution with zero
mean and the stated covariance; and q1 and q2 are
clock-specific constants. In this paper, ballistic coef-
ficients and sensor biases are modeled as constants.

3. Analytic Observability

Graph-based observability analysis links the ob-
servability of a distributed system to a graph rep-
resenting the flow of measurement information be-
tween its members [25]. Here, graph topologies are
combined with prior Lie derivative results to pro-
pose sufficient graphical conditions for system orbit
observability, providing a simple initial indication of
whether orbits are likely to be strongly or weakly ob-
servable in the analytic sense. Prior research has as-
sumed instantaneous global information access across
the system [12, 13] whereas this work assumes ob-
servers have limited access to measurement informa-
tion. This allows more granular modeling of observ-
ability variations for different observers and inclusion
of physical system limitations.

3.1 Topology Definition

Consider a system of Ns objects forming the set S.
Within S are subsets of observers O, passive objects
P, and beacons B. Beacons may be either external
beacons Be ⊆ B or internal beacons Bi ⊆ B. The
system directed measurement graph [26] is defined
as G = {S,M,W}. S = O ∪ P ∪ B is the set
of graph nodes and object states to be estimated.
M⊆ S ×S is the set of graph edges. Edges describe
the directed flow of measurement information from
target to observer. W are weights associated with
each edge. An edge from target j to observer i is
denoted j → i with weight wji. Edges may represent
absolute position measurements (iff j ∈ B) or bearing
angles. Unless specified, wji = 1. Figure 3 presents
an example. Observers may also communicate over
the ISL: consider a set C of directed communication
edges which allow sharing of relevant measurement
information. Figure 4 presents an example with C =
{a → c, c → d, d → c}. The resulting measurement
edges are displayed in Figure 5.

Define Ti as the set of targets of observer i and Ci
as the set of remote observers i communicates with.
Then i receives measurements of (and estimates the
states of) objects in subsystem Si = Ti ∪ Ci ∪ {i}.
Denote the complete set of targets for all j ∈ Ci as
TCi = {k | k ∈ Tj , j ∈ Ci}. As per Section 2, observer
i only utilizes measurements of targets k ∈ Si. There-

Fig. 3: Here, a measures b and c; c measures a and b;
and d measures b

.

Fig. 4: Here, a sends messages to c while c and d
exchange messages.

foreMi, or the set of measurement edges directed to
i, is the union of six subsets:

1. If i ∈ Be: An absolute orbit measurement of i.
2. If {Ci ∩ B} ≠ ∅: Remote absolute orbit mea-

surements of beacons in Ci.
3. If i ∈ TCi : Remote bearing angles of i.
4. If Ti ̸= ∅: Local bearing angles of targets in Ti.
5. If {TCi

∩ Ti} ≠ ∅: Remote bearing angles of
targets in Ti.

6. If {TCi ∩ (Ci \Ti)} ≠ ∅: Remote bearing angles
of observers in Ci not already targets in Ti.

Mi is enumerated as

Mi ={(i ∩ Be)→ i} ∪ {(Ci ∩ B)→ i} ∪
{{j | i ∈ Tj , j ∈ Ci} → i} ∪ {Ti → i} ∪
{(Ti ∩ TCi)→ i} ∪ {[TCi ∩ (Ci \ Ti)]→ i}

[16]

and the complete set of graph edges isM = ∪i∈O Mi.
This definition explicitly accounts for distribution and
limited communication and furthermore, observabil-
ity of individual subsystems can be examined and
designed via subgraphs Gi = {Si,Mi,Wi}. Subse-
quent sections discuss computation of weightsW and
consolidation of multiple identical edges into a single
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3.2 Topology Generation

Fig. 5: Here, local edges correspond to measurement
edges from Fig. 3 and remote edges are created by
communication edges in Fig. 4. Object c receives
measurements of b from a and d; and measure-
ments of itself and a from a. Object d receives
measurements of a and b from c.

edge with increased weight.

3.2 Topology Generation

By defining B,O,P, graph nodes S can be enu-
merated. By defining Ti and Ci for all i ∈ S, graph
edges M can be enumerated. It is proposed to gen-
erate physically realistic Ti and Ci by simulation of
DSS states and measurements. Necessary simulation
parameters include the dynamics model; number of
spacecraft, their roles, and initial OE; sensor atti-
tude, FOV, and detectable magnitude; radio commu-
nication range; measurement frequency and collec-
tion period. Via numerical integration of the GVE,
the orbits of all system objects can be simulated and
bearing angles throughout the simulation period can
be computed. Bearing angles are valid if they lie
within the sensor FOV, are below the maximum de-
tectable magnitude, are not affected by eclipses or
sun blinding, and the remote observer (if applicable)
is within ISL range. If there is a sufficient number of
valid measurements N ji

m between observer i and tar-
get j such thatN ji

m ≥ Nmin
m , then Ti = Ti ∪ j. If there

is a sufficient period of communication Nki
c between

i and a remote observer k with {{i ∪ Ti} ∩ Tk} ≠ ∅
and Nki

c ≥ Nmin
c , then Ci = Ci ∪ k. Constants

Nmin
m , Nmin

c are user-defined. Physical system con-
straints are thus explicitly accounted for.

3.3 Lie Derivative Analysis

Graph observability can be analytically assessed
by applying Lie derivative results. Consider a system
of Ns objects whose states are to be estimated using
Nm unit vector measurements. The system model

expressed in state space form is

ẋ = f(x) =


f(x1)
f(x2)

...
f(xNs)

 z = h(x) =


z1(x)
z2(x)

...
zNm(x)

 [17]

where x ∈ R6Ns and z ∈ R3Nm . The zeroth- and
first-order Lie-derivatives of the system are

L0
fh(x) = h(x) L1

fh(x) =
∂h(x)

∂x
f(x) [18]

and the q-order Lie-derivative is

Lq
fh(x) = Lf (L

q−1
f h(x)) [19]

The observability matrix O for the system is then

Oq =
∂

∂x


L0
fh(x)

L1
fh(x)

L2
fh(x)
...

Lq
fh(x)

 =
∂

∂x


h(x)

∂h(x)
∂x f(x)

∂2h(x)
∂x2 f(x)2

...
∂qh(x)
∂xq f(x)q

 [20]

The Lie derivative criterion states that if rank(Oq) =
6Ns for some q > 0 and there are 6Ns linearly inde-
pendent columns of Oq, the system is locally weakly
observable (LWO) at x to qth-order [27]. Note that
intuitively, rows ofOq correspond to measurement in-
formation and columns of Oq correspond to the state
space to be estimated. Thus, the aim of the crite-
rion is to show that enough measurement informa-
tion exists to observe or ‘span’ the estimated state.
Angles-only space systems have been investigated to
2nd- and 3rd-order by Hu et al. [12, 13] using Keple-
rian dynamics, Cartesian states and unit vector mea-
surements. It is proven that a system composed of
an external beacon and Nt targets is second-order
LWO if at least Nt edges fully connect all targets
and the beacon. Furthermore, a system without a
beacon consisting of Ns objects is third-order LWO
if at least Ns edges fully connect all objects. In other
words, the observer must have access to Nm ≥ Ns

unique measurements, where ‘unique’ measurements
occur between a unique object pair. Hu et al. also
show that for some zij to contribute to observability,
i and j must possess distinct orbit planes or distinct
orbit altitudes. In ROE, this corresponds to δi ̸= 0
(distinct orbit planes) and e ̸= δe ̸= 0 or δa ̸= 0 (dis-
tinct orbit altitudes). Measurements fulfilling this
condition are ‘proper’ as opposed to ‘improper’. In
practice, perturbed dynamics improve observability
and make improper edges somewhat observable, but
graphs with proper edges remain comparatively much
more observable, as demonstrated in Section 4.
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3.4 Observability Conditions

3.4 Observability Conditions

Table 1 summarizes observability when the criteria
of [12] are applied to measurement sets for two- and
three-spacecraft subsystems. Rows 2 and 5 of Table
1 are unobservable because Nm < Ns. In Row 3 of
Table 1, even though Nm ≥ Ns, the system is unob-
servable. Equation 11 implies zji = −zij such that
the measurements are non-unique; the zij rows of Oq

are a linear combination of existing zji rows and can-
not increase matrix rank. Remaining rows of Table
1 are observable because either Nm ≥ Nt for systems
with beacons (Rows 1, 4) or Nm ≥ Ns for systems
without beacons (Rows 6, 7) with all measurements
occurring between unique object pairs.

In summary, consider an observer with a two- or
three-spacecraft subsystem. If the observer is an in-
ternal beacon, its own orbit is observable by defini-
tion. For an observer to be an internal beacon, as
per Table 1, it requires access to one or more of the
following sets of subsystem information:

1. A remote bearing angle of itself, measured by
(a) Another observer which is a beacon (Row

1 in Table 1)
(b) Another observer, which is itself a target

of the local observer (Row 7 in Table 1)
2. A local bearing angle of a target, and a remote

bearing angle of the same target, measured by
(a) Another local target (Row 6 in Table 1)
(b) Another observer which is a beacon (Row

4 in Table 1)

Now consider an observer with a subsystem of ar-
bitrary size. If at least one two- or three-spacecraft
subgraph of its nodes and edges fulfils the above con-
ditions, it likewise becomes an internal beacon. Via
the Lie derivative conditions, the orbits of any targets
connected to it via measurement edges are also ob-
servable. Complete system observability is achieved
when each observer is a beacon or the target of a bea-
con, and each passive object is the target of a beacon.
Measurements granting observability must addition-
ally be proper. These conditions are considered suffi-
cient for angles-only observability, as is demonstrated
in Section 4. Systems fulfilling the above conditions
are ‘proper’; systems which do not are ‘improper’. To
formally apply these conditions to the earlier topol-
ogy condition, Algorithm 1 is proposed for determin-
ing analytic observability. The following paragraphs
describe its reasoning with an accompanying example
in Figure 6.

Step 1) in Algorithm 1 initializes graph nodes, as

Objects States Meas. List Observability

i ∈ B xi zi 2nd-order
j ∈ P xj zji
i ∈ O xi zji None
j ∈ P xj (to 3rd-order)
i ∈ O xi zji None
j ∈ O xj zij (= −zji) (to 3rd-order)
i ∈ B xi zi 2nd-order
j ∈ O xj zki
k ∈ P xk zkj
i ∈ O xi zki None
j ∈ O xj zkj (to 3rd-order)
k ∈ P xk

i ∈ O xi zki 3rd-order
j ∈ O xj zkj
k ∈ P xk zji
i ∈ O xi zki 3rd-order
j ∈ O xj zij
k ∈ O xk zjk

Table 1: Analytic observability results when apply-
ing measurement conditions from [12].

defined by the user. Step 2) generates visible local
targets and connected remote observers for each ob-
server, either pre-defined by the user or computed
through simulation. Step 3) initializes graph edges
and edge weights.

Step 4) initializes graph edges for each observer
subsystem. If the subsystem contains Ns objects,
including the observer, there may be Ns − 1 edges
specifically directed to the observer. Additionally, if
the observer is an external beacon, there is an edge di-
rected from itself to itself. Edges from local targets to
the observer are initialized with w = 1 because these
measurements are available by definition. Edges from
remote observers (which are not local targets) to the
observer are initialized with w = 0 because these
measurements are not necessarily available.

Step 5) accounts for remote measurements. If the
remote observer is a beacon, it broadcasts its known
orbit state by definition and the corresponding w is
incremented. Similarly, if the observer receives a re-
mote measurement of a local target, the edge is geo-
metrically unique and the corresponding w is incre-
mented. In this fashion, edge weights explicitly count
the number of distinct measurements of an object. If
the observer receives a remote measurement of itself,
recall that the measurement is not distinct if the re-
mote observer is also a local target; thus, w is only
incremented if this is not the case.
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3.4 Observability Conditions

Algorithm 1: Compute system topology and
analytic observability.

Data: System parameters.
Result: System topology and analytic

observability.
1. Initialize B,O,P,S from inputs.
2. For all i ∈ O:
(a) Generate Ti, Ci from inputs.
(b) For all j ∈ Ci: add j → i to C.
3. InitializeM =W = ∅.
4. For all i ∈ O:
(a) If i ∈ Be: add i→ i toM; wii = 1 to W.
(b) For all j ∈ Ti: add j → i toM; wji = 1 to W.
(c) For all j ∈ (Ci \ Ti): add j → i toM; wji = 0

to W.
5. For all j → i in C:
(a) If j ∈ B: wji+=1.
(b) For all targets k ∈ Tj :

� If k ∈ (Ti ∪ Ci): wki+=1.
� If (k = i) ∧ (j /∈ Ti): wji+=1.

6. For all i ∈ (O \ B):
� If (

∑
j∈Si

wji) ≥ card(Si): add i to Bi.
7. Repeat Steps 3-6 until Bi is unchanged between
iterations.
8. For all i ∈ O:

� If i /∈ B: i is cannot observe the orbit state of
its subsystem. Modifications are required.

9. For all i ∈ P:
� If {j → i | j ∈ B} ∩ M = ∅: the orbit of i is
unobservable. Modifications are required.

Step 6) examines observability of each observer’s
subsystem. To estimate its own orbit, it has been es-
tablished that the observer requires Nm ≥ Ns. Thus,
if the sum of edge weights is greater than or equal
to the number of objects in the subsystem, the ob-
server’s orbit is the observable and it becomes a bea-
con. Consequently, orbits of all objects connected to
it via directed measurement edges are observable.

Step 7) notes that observers may be promoted to
internal beacons if they meet topological conditions.
If so, connectivity is improved: in addition to bearing
angles, beacons broadcast an absolute orbit estimate
and subsequently increase edge weights as per Step
5a). Thus, if observer i becomes a beacon, other ob-
servers j with i ∈ Cj may also promote to beacons.
Propagation of beacon status throughout the system
is accounted for by repeating Steps 3) to 6). Step
8) confirms that each observer is a beacon that may
observe the orbit state of its subsystems. Step 9)

Fig. 6: An example progression of Algorithm 1 for a
six-object system.

confirms that all passive objects are the target of a
beacon are thus observable.

Inclusion of graph weights allows for a simple per-
subsystem visual assessment of observability as well
as a basic assessment of quality of observability: the
greater the ratio

qi =
( ∑

j∈Si

wji

)
/card(Si) [21]

the more unique measurements are available to the
observer with correspondingly stronger observability
(ignoring other factors such as measurement quality).

8



4. Numeric Observability

4. Numeric Observability

Numeric observability analysis quantitatively char-
acterizes system state observability for a given set of
input measurements. In contrast to the analytic ap-
proach, the numeric approach incorporates system-
level errors and uncertainties, perturbed dynamics,
and auxiliary state observability. It therefore pro-
vides a more rigorous and physically relevant result at
the cost of additional computation. This research ex-
tends the method of Koenig et al. [4,10,11] which di-
rectly estimates a state covariance matrix using mea-
surement sensitivity and noise matrices. This is pre-
ferred over other metrics such as the observability
Gramian because estimated uncertainty of specific
state components can be directly related to mission
requirements. Specific extensions include the effects
of dynamics model uncertainty, partial measurement
availability, and added auxiliary states.

4.1 Covariance Formulation

Consider a function providing a set of local mea-
surements m to an observer, as a function of ob-
server index i, state estimation epoch t0, system state
x0 = x(t0), and measurement epoch t. Recall the
clock offset of observer i at epoch t, cerr(i, t0,x0, t).
Then, the function has the form

mi(t) = h(i, t0,x0, t+ cerr(i, t0,x0, t)) [22]

Measurements are computed by propagating x0 from
t0 to measurement epoch t and applying the relevant
measurement model to the propagated state.

Let there be remote observers Ci = {j, k, l, ...}
such that the set of subsystem observers is Oi =
{i, j, k, l, ...}. The batch of measurements received by
observer i from itself and connected remote observers
at epoch t is Mi(t). Furthermore, let measurements
be provided at Nt epochs t1, ..., tNt

, collectively re-
ferred to as tm. Across all epochs, the batch of mea-
surements received by observer i is Mi(tm), with

Mi(t) =


mi(t)
mj(t)
mk(t)

...

 Mi(tm) =

 Mi(t1)
...

Mi(tNt)

 [23]

Partition state x into estimated components xest

and components provided a-priori xprior. The sensi-
tivity matrix Yest is formed by evaluating the partial
derivatives of each measurement with respect to each
component of xest, via

Yest =
∂Mi(tm)

∂xest

∣∣∣
x

[24]

Partial derivatives are computed using central differ-
ences with

h± = h(i, t0,x0 ±∆x, t+ cerr(i, t0,x0 ±∆x, t))

∂h

∂x

∣∣∣
x
=

h+ − h−

2||∆x||
[25]

where ∆x is a vector that is zero except for the state
component where sensitivity is being evaluated.

The observability analysis leverages the following
model [11] for the relationship between covariance
matrix R for the measurement batch and covariance
matrix Pest for the estimated state, given by

R = YestPestY
⊤
est [26]

When Yest is full column rank, Pest is computed as

Pest =
(
Y ⊤
estYest

)−1(
Y ⊤
estRYest

)(
Y ⊤
estYest

)−1

[27]

The matrix R consists of three covariance contribu-
tions, with

R = Rsen +Rprior +Rdyn [28]

Rsen denotes measurement noise arising from the sen-
sor, Rprior denotes measurement noise arising from
uncertainty in any a-priori information, and Rdyn de-
notes measurement noise arising from dynamics model
uncertainty (e.g. due to unmodeled or mismodeled
perturbations). Rsen and Rprior are given by

Rsen =


Rmeas 0 . . . 0

0 Rmeas . . . 0
...

...
. . .

...
0 0 . . . Rmeas

 [29]

Rprior = YpriorPpriorY
⊤
prior [30]

where Rmeas is the measurement noise covariance for
a single measurement. Independent measurements
with identical noise distributions are assumed. A typ-
ical choice for bearing angles is Rmeas = (20′′)2I2.
The new Rdyn term is given by

Rdyn =


Rproc 0 . . . 0
0 Rproc . . . 0
...

...
. . .

...
0 0 . . . Rproc

 [31]

where Rproc is the cumulative uncertainty caused by
process noise for a single measurement. Rproc has
dependence on epoch t, system state x(t), and user-
defined process noise dR = [dabs,drel]

⊤ ∈ R6. Pro-
cess noise dR consists of perturbing accelerations in

9



4.2 Partial Measurement Availability

R for the observer absolute orbit and target rela-
tive orbits. Typical approximate values in LEO are
dabs = 10−7[1, 1, 1] m/s2 and drel = 10−9[1, 4, 1] m/s2.

To computeRproc for bearing angle measurements,
consider the combined time-varying orbit state and
orbit covariance for an observer and target at t.

x(t) = [α(t), δα(t)] ∈ R12

Σ(t) =

[
Σα 06×6

06×6 Σδα

]
∈ R12×12

[32]

Given Σ(t), the propagated covariance Σ(t + ∆t) is
computed via

Σ(t+∆t) =A(x(t))Σ(t)A⊤(x(t))+

B(x(t)) diag(dR∆t)B⊤(x(t))
[33]

where A(x(t)) ∈ R12×12 is the time-varying state
transition matrix [19] and B(x(t)) is the RTN con-
trol input matrix [28]. The state covariance due to
dynamics uncertainty is initialized as Σ(t0) = 012×12

at estimation epoch t0. At each subsequent epoch,
Σ(t) is converted to Rproc(t) via an unscented trans-
form from orbit states to bearing angles. In this
fashion, Rdyn captures increasing measurement un-
certainty with time due to mismodeled dynamics and
correlation of uncertainty with orbit state.

4.2 Partial Measurement Availability

To apply the numeric observability computation
to a system, its topology is first generated via Al-
gorithm 1. M(t) and Pest can then computed for
each subsystem. However, recall from Section 3 that
beacon status can propagate between observers: an
observer j may rely on the absolute state estimate zi
broadcast by remote beacon i to attain subsystem ob-
servability for itself. If so, Rmeas for zi is the absolute
state uncertainty computed in Pest for subsystem i.
It is therefore necessary to compute subsystem Pest

estimates in order, such that subsystems reliant on
remote state estimates from i compute their Pest af-
ter i. Upon completion, all subsystem Pest may be
combined to produce a system-wide metric, such as
worst-case uncertainty across all objects.

Furthermore, measurement availability throughout
tm is often inconsistent due to varying inter-spacecraft
geometry, sensor attitudes, and target visibility con-
ditions. Numerical checks are performed at each epoch
to confirm measurement availability. If unavailable,
the corresponding row in Yest is removed. Physical
measurement constraints are thus accounted for. Ad-
ditionally, if no measurements are sensitive to a spe-
cific state component, the corresponding column in

OE a e i Ω ω M0

LEO 6778 km 0.001 98◦ 0◦ 0◦ 0◦

EEO 13556 km 0.5 98◦ 0◦ 0◦ 0◦

MEO 20200 km 0 55◦ 0◦ 0◦ 0◦

ROE aδa aδλ aδex aδey aδix aδiy
EI 0 100 km 0 4 km 0 4 km
IT 0 100 km 0 0.2 km 0 0.2 km
CO 0 2πa/Ns 0 0 0 2πa/Ns

Table 2: Orbit geometries for numerical analysis.

Model Perturbations Propagation

Kepler None Analytic
J2 J2 gravity Analytic

5x5 5x5 spherical harmonic gravity
RK4 integrator
60s timestep

Complete

20x20 spherical harmonic gravity
Harris-Priester atmosphere
with cannonball drag model
Solar radiation pressure
with cannonball drag model
Third-body lunisolar gravity

RK4 integrator
60s timestep

Table 3: Dynamics models for numerical analysis.

Yest is removed to maintain numerical stability. Such
state components are unobservable.

4.3 Numeric State Observability Assessment

To illustrate the numeric method, it is first use-
ful to assess angles-only observability when varying
estimated states and orbit geometries. Tables 2-4
present orbit geometries, dynamics models, and de-
fault hardware parameters. Absolute orbits include
near-circular low Earth orbit (LEO), eccentric Earth
orbit (EEO) and medium Earth orbit (MEO). For-
mations include an E/I-vector separated swarm (EI)
at close inter-object separations with significant rel-
ative motion; an in-train formation (IT) at close sep-
arations with little relative motion; and a constella-
tion (CO) at far separations with equally-spaced or-
bit planes and mean anomalies. Each formation con-
sists of four observers {i, j, k, l} such that the ROE
between pairs {i, j}, {j, k}, {k, l} are identical as per
Table 2. The VBS consistently points in the (anti)-
velocity direction for IT and EI cases, or cyclically
points at each target in subsequent epochs for CO
cases. Measurements are generated across two orbits
with fifty equally-spaced measurements per orbit.

Results are presented in Table 5 for the complete
dynamics model. The overbar denotes a mean un-
certainty across all system objects, normalized by
semimajor axis where appropriate. Column 1, where
only the relative orbit is estimated, is expected to be
2nd-order LWO. Column 2, where absolute and rela-
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4.4 Numeric Validation of Analytic Observability

Parameter Value

Spacecraft mass 50 kg
Spacecraft surface area 1m2

Spacecraft ballistic coeff. 0.025
VBS FOV 12◦ × 10◦

VBS detectable magnitude 7.5
VBS sun exclusion angle 45◦

VBS noise (1σ) (20′′, 20′′)
GNSS position noise (1σ) (10, 10, 10) m
GNSS velocity noise (1σ) (0.02, 0.02, 0.02) m/s
ISL radio range 2000 km
Process noise (absolute) (10−7, 10−7, 10−7)R m/s2

Process noise (relative) (10−9, 4× 10−9, 10−9)R m/s2

Clock offset (initial) 1 second
Clock drift rate (initial) 1 µs/s

Table 4: Default parameters for numeric analysis.

tive orbits are estimated, is expected to be 3rd-order
LWO. Both cases are observable but the 3rd-order
case is numerically weaker, as expected.

Column 3 introduces clock offset and drift estima-
tion. Clock parameters are observable with bearing
angles and furthermore, their inclusion has only mi-
nor effects on orbit uncertainty. Column 4 introduces
ballistic coefficient estimation and although the coef-
ficients are observable, uncertainty in a, δa and u
increases because drag forces (which are dependent
on ballistic coefficient) cause secular changes in the
semimajor axis. Column 5 adds estimation of bear-
ing angle sensor biases, for which azimuth biases are
more observable. The δλ ROE is itself analogous to
an elevation bias caused by orbit curvature, and in
near-circular orbits where δλ is approximately con-
stant, it is challenging to differentiate an elevation
bias caused by the sensor itself.

Column 6 presents an IT formation for which ob-
servability is much weaker due to the reduced mag-
nitude of relative motion. Measurements in this for-
mation are close to improper with δi ≈ δe ≈ δa ≈ 0.
Column 7 presents an eccentric orbit for which ob-
servability is much stronger, due to the additional
components of absolute and relative motion intro-
duced by eccentricity [29]. Column 8 presents a con-
stellation at far separations. Absolute orbit observ-
ability particularly benefits because the orbits and
measurement baselines of each spacecraft are very
distinct; resulting bearing angle geometries reduce
ambiguities in localization, analogous to reducing ‘di-
lution of precision’ [30] in GNSS navigation. Relative
orbit observability is not as strong because at larger
target ranges, the same amount of bearing angle noise
corresponds to a larger state uncertainty.

Overall, the numeric analysis demonstrates that it

Rel. Orbit EI EI EI EI EI IT EI CO
Abs. Orbit LEO LEO LEO LEO LEO LEO EEO MEO

σa (m) - 24 40 130 130 520 51 78
aσex (m) - 270 270 270 270 15000 76 73
aσey (m) - 310 340 350 350 15000 130 71
aσi (m) - 570 570 570 580 6000 120 160
aσΩ (m) - 1100 1100 1100 1100 5900 250 230
aσu (m) - 310 320 420 1400 44000 310 260
aσδa (m) 2 4 4 7 7 160 2 35
aσδλ (m) 190 350 350 410 760 5900 280 430
aσδex (m) 1 9 9 9 9 370 2 120
aσδey (m) 8 15 16 16 16 350 13 110
aσδix (m) 1 27 27 28 28 140 3 230
aσδiy (m) 8 19 20 20 20 150 11 310
σδcerr (ms) - - 35 36 510 12000 97 110
σδderr (µss ) - - 3.0 3.2 3.2 3.2 1.9 1.7
σδBatm

- - - 0.0062 0.0062 0.018 - -
σδBsrp

- - - - - - 0.0012 0.16
σbα (′′) - - - - 0.4 0.4 0.5 0.4
σbϵ (′′) - - - - 14 450 1.1 0.5

Table 5: Estimated 1-σ state uncertainty for varying
state components and orbit geometry.

is possible to estimate orbit and auxiliary state com-
ponents using angles-only measurements. However,
orbit geometry significantly affects observability and
must be taken into account. The strongest observ-
ability results are encountered when motion of targets
in the bearing angle state space is highly nonlinear,
geometrically distinct, and large in magnitude.

4.4 Numeric Validation of Analytic Observability

The numeric method is next applied to validate
the topological observability conditions of Algorithm
1. All possible two- and three-spacecraft systems are
enumerated and the numeric observability of proper
systems fulfilling at least one observability condition
is compared to observability of improper systems which
do not. The set of systems consisting of Ns objects is
enumerated by considering all possible assignments of
of sets Ti and Ci for i ∈ {1, 2, ..., Ns}, where i ∈ Ti im-
plies i is an external beacon and i /∈ Ci. After combin-
ing topologically identical cases and discarding trivial
cases, there exists 13 unique two-object systems and
322 unique three-object systems. Of these, 232 are
expected to be observable via Algorithm 1.

Table 6 presents minimum and maximum numeric
orbit uncertainties for proper versus improper sys-
tems. In the majority of cases, the maximum orbit
uncertainty of a proper system is orders of magni-
tude smaller than the minimum orbit uncertainty of
an improper system. Exceptions are observed for IT
systems which possess large uncertainties despite be-
ing topologically proper; this is because the measure-
ments themselves are very close to improper. A sep-
arate exception is the constellation. The minimum
uncertainty for improper systems (occurring when
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5. Observability Optimization

Orbit
Dynamics

Orbit Uncertainty (% of a)
Abs. Rel. Proper System Improper System

LEO EI Kepler [0.00003, 0.04291] [13.94, 5696]
LEO EI J2 [0.00003, 0.04203] [13.94, 1069]
LEO EI 5x5 [0.00003, 0.04197] [12.99, 838.9]
LEO EI Complete [0.00003, 0.04197] [12.87, 826.8]
LEO IT Kepler [0.00003, 3.352] [14750, 103000]
EEO EI Kepler [0.00001, 0.00599] [0.3544, 3.728]
MEO CO Kepler [0.00001, 0.00490] [0.00592, 60.06]

Table 6: Numeric orbit uncertainty ranges for proper
vs. improper systems.

Nm = Ns−1, as per Row 5 in Table 1) is only slightly
larger than the maximum uncertainty for proper sys-
tems (occurring when Nm = Ns, as per Row 6 in
Table 1). Constellations in general possess stronger
observability, and this result perhaps indicates the
presence of a 4th-order or above analytic LWO con-
dition for three object-systems when Nm = Ns − 1.
Results also show the expected trend of additional
dynamics perturbations improving observability.

Finally, it is useful to characterize the strengths
of angles-only analytic observability conditions pre-
sented both here and in prior work. Consider four
system ‘types’, conceptually illustrated in Figure 7
for four spacecraft. To estimate Ns states,

1. Type 1 uses Ns−1 observers to produce a chain
of Ns − 1 angles

2. Type 2 uses Ns observers to produce a loop of
Ns angles

3. Type 3 uses two observers with one shared tar-
get to produce Ns angles

4. Type 4 uses two observers with Ns − 2 shared
targets to produce 2Ns − 2 angles

This paper considers Type 3 and Type 4 systems with
Ns ≥ 3 observable; Type 2 systems with Ns = 3 ob-
servable; and Type 1 systems unobservable via Al-
gorithm 1. Type 2 systems with Ns > 3 are in-
validated by the communication limitations imposed
by the topology definition. Work by Hu et al. [13]
which assumes global communication considers such
systems valid and observable and proposes Type 1
systems with Ns ≥ 4 are analytically observable also.

Table 7 presents a comparison of system types. In
practice, Type 1 systems are only numerically observ-
able for the constellation; observability remains poor
for Type 1 EI and IT swarms, even for Ns ≥ 4. Re-
sults for Type 3 and Type 4 systems are consistent
and follow expected trends in that additional mea-
surements reduce orbit uncertainty. Type 2 systems

Fig. 7: Four topology types for a four-object system.

EI EI CO
LEO LEO MEO
5x5 Kepler Kepler

Type Members Measurements Orbit Uncertainty (% of a)

1 i, j zji 396 2860 6.1
1 i, j, k zji,kj 15.0 16.1 0.0072
1 i, j, k, l zji,kj,lk 13.0 14.0 0.0058
1 i, j, k, l,m zji,kj,lk,ml 10.6 11.4 0.0058
1 i, j, k, l,m, n zji,kj,lk,ml,nm 9.7 10.4 0.0057
2 i, j zji,ij 379 1890 4.32
2 i, j, k zji,kj,ik 0.042 0.043 0.0050
2 i, j, k, l zji,kj,lk,il 0.999 1.005 0.0043
2 i, j, k, l,m zji,kj,lk,ml,im 0.034 0.035 0.0045
2 i, j, k, l,m, n zji,kj,lk,ml,nm,in 0.498 0.500 0.0043
3 i, j, k zji,ki,jk 0.042 0.043 0.0050
3 i, j, k, l zji,ki,li,jl 0.034 0.035 0.0039
3 i, j, k, l,m zji,ki,li,mi,jm 0.030 0.031 0.0037
4 i, j, k zji,ki,jk,ik 0.036 0.037 0.0043
4 i, j, k, l zji,ki,li,kl,jl,il 0.028 0.029 0.0033
4 i, j, k, l,m zji,ki,li,mi,lm,km,jm,im 0.024 0.024 0.0029

Table 7: Maximum estimated orbit uncertainty for
the given system and measurement set.

possess less consistency. For the EI/LEO case, sys-
tems with even Ns encounter comparatively larger
uncertainty due to a weakly observable mode that
manifests when the ROE ratios δex,y/δλ and δix,y/δλ
are identical between all objects. Introducing a unique
ROE ratio between one object pair removes the mode.

Overall, numeric analysis suggests that the topo-
logical conditions of Algorithm 1 are sufficient for
complete system orbit observability. Proper systems
fulfilling the conditions display physically consistent
observability trends regardless of orbital configura-
tion or dynamics model fidelity.

5. Observability Optimization

DSS must achieve a certain level of state estima-
tion accuracy to allow fulfilment of mission objec-
tives. For angles-only systems with complex rela-
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5.1 Design State Space

tionships between system parameters and navigation
performance, these requirements must be specifically
addressed during the system design phase. This sec-
tion places the analytic and numeric methods from
Sections 3 and 4 within an optimization framework
to propose a proof-of-concept method for flexible, au-
tomatic optimization of system observability in accor-
dance with designer preferences.

5.1 Design State Space

In results thus far, five core system properties have
been found to affect observability:

1. The number of unique bearing angle edges ac-
cessible by the observer, as per the the sum of
relevant edge weights in its subsystem topology.

2. The number of bearing angle measurements re-
ceived for each edge throughout the measure-
ment period, as per the rows in Yest.

3. The sensitivity of each received bearing angle
measurement to the subsystem state and its
variability and nonlinearity throughout the mea-
surement period, as expressed in Yest.

4. The amount of measurement noise and uncer-
tainty, as expressed in R.

5. The estimated state components, as per the
columns in Yest.

Each is dependent on physical aspects of the system.
The measurement topology is affected by the number
of active observers and passive targets within the sys-
tem and which targets prove navigable by which ob-
servers, as influenced by orbit geometry, sensor hard-
ware and attitude, target visibility, and ISL commu-
nication range. The number of bearing angle mea-
surements received in total likewise depends on these
parameters as well as the measurement frequency and
total measurement period. The variability and non-
linearities present in bearing angle measurements are
dependent on orbit geometry and absolute and dif-
ferential dynamics. Measurement noise is influenced
by both sensor and process noise. The state space for
optimization is therefore complex and to limit prob-
lem scope, two specific case studies for DSS design in
lunar orbit are defined as follows. The lunar scenario
is of interest due to its variety of potential near-future
applications [10] and challenges of employing external
localization methods such as GNSS or DSN measure-
ments.

5.2 Case Study 1

Consider a swarm of spacecraft performing dis-
tributed science operations in a quasi-frozen low lunar
orbit [31]. It is desired to estimate the absolute or-
bit, relative orbit and clock parameters of each swarm
member using angles-only methods. Science and col-
lision avoidance requirements specify initial nominal
OE and allowable ROE ranges of

α = [1850 km,−0.0482, 0.0120, 89◦, 166◦, 270◦]⊤

δαmin = [0, 40 km, 0, 1000 m, 0, 1000 m]⊤

δαmax = [0, 60 km, 0, 4000 m, 0, 4000 m]⊤

Across the system, define the worst-case observer ab-
solute position uncertainty Σr ∈ R3; worst-case tar-
get relative position uncertaintyΣδr ∈ R3; and worst-
case differential clock uncertainty Σδcerr . To meet
mission requirements, the system must fulfil

||Σr||2 < Σgoal
r = 100 m

||Σδr||2 < Σgoal
δr = 50 m

Σδcerr < Σgoal
δcerr

= 100 ms

using two orbits of measurements.
For simplicity, it is assumed ROE between each

pair of neighboring objects (with respect to u) are
identical. Physical parameters of each object are also
assumed identical with default values as per Table 4.
Observers and targets are arranged such that passive
targets are in the center of the swarm with respect to
u; half of the observers fly ahead of passive targets
with VBS pointed in the anti-velocity direction and
half of the observers fly behind passive targets with
VBS pointed in the velocity direction. For swarm
members in sufficiently similar orbits this arrange-
ment produces the most possible bearing angle edges
without requiring active target pointing. Figure 8
presents a schematic.

Fig. 8: A notional schematic of a five-member swarm.
‘Neighbors’ are pairs {i, j}, {j, k}, and so on.

Parameters pi to be optimized are displayed in Ta-
ble 8. Each is constrained to a valid interval gi =
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5.3 Case Study 2

Parameter Description Valid Interval Step Size
p1 Number of observers [1, 10] 1
p2 Number of passive targets [0, 10] 1
p3 δλ [10, 100] km 1 km
p4 δey/δλ [0, 0.1] 0.001
p5 δiy/δλ [0, 0.1] 0.001
p6 VBS FOV [10, 90]◦ 1◦

p7 VBS detectable magnitude [5, 10] 0.1
p8 VBS measurement noise [5, 30]′′ 1′′

p9 Process noise factor [10−3, 10] 10−3

p10 Measurement frequency [60, 300] sec 5 sec
p11 Communication range [200, 10000] km 100 km
p12 VBS per observer [1, 2] 1

Table 8: Optimization variables for Case Study 1.

[li, ui] discretized by step size ∆pi. It is assumed
δa = δex = δix = 0 to further simplify formation
optimization. ‘Process noise factor’ refers to a mul-
tiplicative factor for the default process noise in Ta-
ble 4, to emulate the inclusion of more accurate but
more computationally intensive dynamics models on
board. ‘VBS per observer’ allows for placing two sen-
sors on each observer to simultaneously view the ve-
locity and anti-velocity directions. It is elected to dis-
cretize the entire state space for consistency because
some parameters (such as p1 and p2) are discrete by
definition.

5.3 Case Study 2

Consider a DSS performing wide-coverage SSA op-
erations in a lunar flower constellation [32]. It is de-
sired to estimate the absolute orbit, relative orbit and
clock parameters of each constellation member using
angles-only methods. The constellation consists of
Np orbit planes separated equidistantly in Ω. Within
each plane, spacecraft are separated equidistantly in
u. Inclination i is variable. Other absolute OE are
constant with a = 5054 km; e = 0.6067; ω = 0◦. Fig-
ure 9 presents a schematic for i = 60◦. To meet mis-
sion requirements, estimated navigation performance
must fulfil

||Σr||2 < 50 m

||Σδr||2 < 100 m

Σδcerr < 100 ms

using two orbits of measurements and for redundancy,
the system must maintain this performance upon the
loss of any single member. The physical parameters
of each observer are assumed identical with default
values as per Table 4. To track visible targets in
different orbit planes with limited sensor FOV, ob-
servers are required to actively point their VBS at
their targets in a cyclic fashion throughout the mea-

Parameter Description Valid Interval Step Size
p1 Observers per plane [1, 6] 1
p6 VBS FOV [30, 120]◦ 1◦

p7 VBS detectable magnitude [7, 12] 0.1
p8 VBS measurement noise [5, 30]′′ 1′′

p9 Process noise factor [10−3, 10] 10−3

p10 Measurement frequency [300, 900] sec 10 sec
p11 Communication range [2000, 20000] km 100 km
p13 Number of orbit planes [1, 6] 1
p14 Orbit plane inclination [30, 90]◦ 1◦

Table 9: Optimization variables for Case Study 2.

surement period. Parameters to be optimized are dis-
played in Table 9.

Fig. 9: A notional schematic of a four-plane constel-
lation with three observers (circles) per plane.

5.4 Cost Function Formulation

Denote the system design state space as P for an
output design p ∈ P. The goal of the optimization
is to optimize p with respect to a defined cost. This
cost is related to a navigation performance metric
where here, the basic navigation cost JΣ is defined
quadratically as

JΣ(p) = Σ⊤
r QrΣr +Σ⊤

δrQδrΣδr +QδcerrΣ
2
δcerr [34]

with weighting terms Qr,Qδr ∈ R3×3 and Qδcerr . In
this paper, Qr = Qδr = I3 and Qδcerr = v2max, where
vmax is the maximum orbit velocity observed dur-
ing the measurement period. Worst-case rather than
mean navigation performance is optimized to ensure
all system members meet the required performance
goal. More generally, it is necessary to balance mul-
tiple costs: for example, adding another observer may
improve observability but presents a non-trivial im-
plementation cost. Practical constraints may make it
be preferable to minimize the number of spacecraft or
maintain a desired set of ROE as closely as possible.
Additional cost terms must then be added to total
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5.5 Optimization Method

cost J(p). Examples are provided below which may
be modified to suit user preferences.

Define a system cost function J(p) as

J(p) = Jplane(Jobs + Jtar) + Jnom + Jgoal [35]

which accounts for costs of additional orbit planes
Jplane; observers per plane Jobs; passive targets per
plane Jtar; deviation from nominal ROE Jnom; and
failure to meet goal performance Jgoal. Observer cost
consists of various hardware costs and is defined as

Jobs(p) = QNo
No(1 + Jvbs + Jisl + Jcpu)JΣ [36]

where No is the number of observers, QNo
is a weight-

ing factor and Jvbs, Jisl, Jcpu are costs related to the
optical sensor, ISL radio, and onboard processor re-
spectively. The weighting factor is

QNo+1 =
QNo

(1− fo)

No

No + 1
with Q1 = 1 [37]

This definition encodes the desired navigation per-
formance benefit of adding an additional observer in
0 < fo < 1. For example, choosing fo = 0.2 ensures
adding one observer must reduce JΣ by at least 20%
to improve cost Jobs. Similarly,

Jplane(p) = QNpNp Jtar(p) = QNtNtJΣ [38]

QNp+1 =
QNp

(1−fp)
Np

Np+1 QNt+1 =
QNt

(1−ft)
Nt

Nt+1 [39]

This paper applies fo = 0.35; ft = 0.25; fp = 0.75.
Constituent terms of Jobs are defined as

Jvbs = p12

(
Qfov

p4
30◦

+Qmag
p5
7

+Qmeas
20′′

p6

)
[40]

Jcpu = Qproc
1

p7
+Qfreq

120 s

p8
[41]

Jisl = Qcomm
p9

2000 km
[42]

In order, each term accounts for the cost of sensors
per observer; sensor FOV; sensor detectable magni-
tude; sensor measurement noise; dynamics process
noise; measurement frequency; and radio communi-
cation range, via simple proportional functions. More
realistic dependencies can be implemented given know-
ledge of available hardware options. This paper ap-
plies weightings Qfov = 0.1; Qmeas = Qmag = 0.2;
Qcomm = Qfreq = 0.05; Qproc = 0.001.

To define ROE cost penalties, consider a range of
nominal ROE defined by minimum ROE δαmin and
maximum ROE δαmax. Penalized ROE lying outside
this range are found via the elementwise maximum

δαpen = max(0, δαmin− δα, δα− δαmax). The ROE
cost penalty is defined quadratically as

Jnom(p) = Np(No +Nt)δα
⊤
penQnomδαpen [43]

where Qnom ∈ R6×6 is a weighting matrix determin-
ing penalization of specific ROE. This paper applies
Qnom = diag(100, 0.01, 1, 1, 1, 1) m. Finally, the nav-
igation performance penalty is defined by

Jgoal(p) = Qgoal
r max(0, ||Σr||2 − Σgoal

r )2

+Qgoal
δr max(0, ||Σδr||2 − Σgoal

δr )2

+Qgoal
δcerr

max(0, ||Σδcerr ||2 − Σgoal
δcerr

)2

[44]

This paper applies weights ofQgoal
α = Qgoal

δα = Qgoal
δcerr

=

103 to penalize the design towards achieving the nav-
igation performance constraint.

Recall that the valid design domain P is limited
to intervals gi = [li, ui] as in Tables 8-9. Solutions
are therefore subject to a vector of box constraints
l ≤ p ≤ u. The optimization problem is expressed as

min
p∈P

J(p)

s.t. l ≤ p ≤ u
[45]

where the problem constraints and domain are con-
vex. However, the cost function is non-convex be-
cause state uncertaintiesΣ in JΣ are not convex func-
tions of p. This can be verified by numeric compu-
tation of the Hessian which is not always positive
definite for the given problem. Convergence to the
global minimum is therefore not guaranteed but can
be encouraged with a suitable optimization method.

5.5 Optimization Method

Given some design initialization p0 ∈ P, the re-
sulting graph topology G0 is computed as per Section
3 and is tested for analytic observability via Algo-
rithm 1. If unobservable, parameters are increased
via pi ← pi + 0.1(ui − li) for i = 1, 6, 7, 10, 11, un-
til constraints become active, and the graph and its
analytic observability are recomputed. This param-
eter set aims to improve connectivity by increasing
the total number of measurements and graph edges
potentially available to observers. Numeric optimiza-
tion commences once an observable initialization is
found. At iteration k, JΣ(p

k) is computed using the
numeric method of Section 4 and the result is used
to compute system cost J(pk). It is then necessary
to compute a descent direction γk and step size αk

which sufficiently reduce the cost function and con-
verge towards a local cost minimum.
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The Broyden-Fletcher-Goldfarb-Shanno (BFGS) al-
gorithm [33] is used to compute γk. BFGS is cho-
sen because it is a quasi-Newton method which in-
corporates curvature information to accelerate con-
vergence. Quasi-Newton methods also require fewer
function evaluations than true Newton methods by
approximating the Hessian with first-order informa-
tion. To incorporate box constraints, the projected
quasi-Newton BFGS (PQN-BFGS) algorithm proposed
by Kim et al. [34] is applied. PQN-BFGS determines
which variables are free (to be optimized over) or
fixed (to remain unchanged) at each iteration and
projects the quasi-Newton descent step onto the con-
vex set prescribed by l ≤ p ≤ u. Gradients are com-
puted using central differences and the step sizes in
Tables 8-9. Inexact line search is used to choose αk,
applying the standard Wolfe conditions [33] to assess
step validity. The initial guess for αk at each iteration
is that which changes the integer parameter with the
steepest gradient (i.e. p1,2,13) by ±1; if the Wolfe con-
ditions are violated, the next guess for αk is doubled
or halved as appropriate. Optimization terminates
when the minimum allowed discrete step size cannot
decrease cost.

Note that the problem structure violates the condi-
tions required for BFGS to converge to a global min-
imum. Firstly, the state space is discretized rather
than continuous, implying a reduction in quality of
the Hessian approximation. However, for the case
studies above, the discretization retains convergent
properties. Secondly, BFGS cannot guarantee reach-
ing a global minimum for non-convex problems in
which other critical points such as saddle points or
local minima exist. Some optimization algorithms
have been explicitly developed for enhanced perfor-
mance in non-convex scenarios [35], but even so, con-
vergence to a global minimum cannot be guaranteed
in general. It is instead suggested here to augment
BFGS with a post-convergence ‘exploration’ step mo-
tivated by insights into where local minima are likely
to occur. Consider a system for which a local min-
imum exists at pa and a global minimum exists at
pb, such that pa,1 = 6; pb,1 = 7; pa,7 = 2; pb,7 = 2.4;
and pa,i = pb,i for all other parameters (Figure 10).
Conceptually, pb adds another observer to improve
connectivity and observability, but for the new mea-
surements to become accessible and improve system
cost, each VBS must be able to detect fainter tar-
gets. When at local minimum pa, however, BFGS
may naively test some pk7 = pa,7 + 0.1 and deter-
mine that increasing p7 cannot decrease cost. Physi-
cal aspects such as target visibility lead to discontin-

uous mappings between hardware parameters, mea-
surement availability, and system cost which prove
challenging for first- and second-order methods to
traverse. In response, at each iteration, the algo-
rithm is instructed to explore in two directions us-
ing pk+1

1 ← pk1 ± 1 and pk+1
i ← pki ± 0.1(ui − li)

for i = 6, 7, 10, 11. This ensures any potential ben-
efits of an additional observer and its measurements
are taken advantage of by improved hardware. Con-
stellations encounter additional discontinuities cre-
ated by the unpredictable visibility of targets in sep-
arate orbit planes; thus, another exploration step of
pk+1
1 ← pk1 ∓ 2 and pk+1

13 ← pk13 ± 2 is added to ex-
amine potential benefits of dividing fewer observers
among more planes. This level of exploration was
empirically chosen by examining the problem state
space. Algorithm 2 presents pseudocode for the op-
timization.

Fig. 10: A contour plot of system cost with local min-
ima (red) and global minima (green).

5.6 Optimization Results

Table 10 presents optimal design parameters for
Case Studies 1 and 2, confirmed to be global optima
via state space sampling. For the applied cost func-
tion weightings, the swarm in Case 1 converges to
four active observers with four passive targets. Pas-
sive targets remain useful because they provide ad-
ditional measurement edges while being less costly
than adding an active observer. This configuration
also suggests the concept of using large spacecraft
carrying science instruments to deploy small observer
spacecraft carrying VBS which provide cooperative
real-time orbit determination. ROE converge to the
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5.6 Optimization Results

Algorithm 2: Observability optimization.

Data: Initial design parameters p0

Result: Optimal design parameters p∗

1. Compute G0 and assess analytic observability.
2. While G0 infeasible:
(a) p0i ← p0i + 0.1(ui − li) ∀ i ∈ {1, 6, 7, 10, 11}
(b) Recompute G0 and assess observability
(c) If all constraints are active, report failure
3. Initialize second-order gradient scaling matrix
S0 ← I, system cost J0 ← J(p0), counter k ← 0
4. While Jk+1 < Jk:
(a) Compute projection Ω(p) of pk onto [l,u]
(b) Compute gradient ∇J(pk)
(c) Compute fixed and free parameter sets [34]
(d) Compute αk using line search with Wolfe

conditions
(e) Compute pk+1 ← Ω[pk − αkHk∇J(pk)]
(f) Compute Sk+1 via PQN-BFGS update [34]
(g) Compute Jk+1 ← J(pk+1)
(h) Perform exploration:

i. Compute J for pk+1
1 ± 1 with

pk+1
i ± 0.1(ui − li) ∀ i ∈ {6, 7, 10, 11}

ii. If constellation: compute J for pk+1
1 ∓ 2

and pk+1
13 ± 2

(i) If exploration cost less than updated cost:
update pk+1 and Jk+1

(j) k ← k + 1
5. Return p∗

formation which produces the most relative motion
while remaining within the nominal ROE range. Hard-
ware parameters such as VBS FOV, detectable mag-
nitude, and ISL range converge to the minimum val-
ues which enable complete graph connectivity. There
is a strong preference towards reducing measurement
noise and process noise to increase the observability
of changes in state with respect to changes in mea-
surements. The final estimated state uncertainties
significantly improve over the performance goal and
all constraints are successfully fulfilled.

The constellation in Case 2 converges to three ac-
tive observers and three orbit planes. Any fewer ob-
servers per plane creates risks of temporary unobserv-
ability due to visibility constraints, whereas more ob-
servers per plane produces relatively limited improve-
ments to observability. Similarly, three orbit planes
with a 70◦inclination balances the number of visible
targets at each epoch, the amount of relative mo-
tion between planes, and the high cost of additional
planes. The optimal VBS FOV and maximum de-

Parameter Description Case 1 Case 2
p1 Number of observers 4 3
p2 Number of passive targets 4 -
p3 δλ 40 km -
p4 δey/δλ 0.1 -
p5 δi/δλ 0.1 -
p6 VBS FOV 19◦ 112◦

p7 VBS detectable magnitude 4.7 11.6
p8 VBS measurement noise 5′′ 5′′

p9 Process noise factor 0.05 0.12
p10 Measurement frequency 90 sec 360 sec
p11 Communication range 400 km 7400 km
p12 VBS per observer 1 1
p13 Number of orbit planes - 3
p14 Orbit plane inclination - 78◦

Σα Abs. position uncertainty 37 m 19 m
Σδα Rel. position uncertainty 19 m 38 m
Σδcerr Rel. clock uncertainty 6 ms 21 ms

Table 10: Optimal design parameters and navigation
performance after automatic optimization.

tectable magnitude are much larger than the swarm
case to account for farther inter-object separations
and extreme radial and cross-track motion. These
values are not necessarily realistic for typical space-
borne cameras which may have FOV of <30◦and a
maximum detectable magnitude of ∼7.5. Neverthe-
less, all performance goals and constraints are suc-
cessfully fulfilled, including navigational redundancy
of any one system member.

Figure 11 presents cost progression for 20 random
design initializations. For 50 tested random initial-
izations, the applied framework produces adequate
performance in that the global optimum is consis-
tently found. Exploration is necessary to find the
global optimum, however, with approximately 20%
of swarm cases requiring exploration and 80% of con-
stellation cases requiring exploration. Both scenar-
ios are therefore non-convex, although local minima
and discontinuities prove somewhat less prominent
for the swarm. The swarm also presents more con-
sistent trends in that higher initial costs imply more
iterations before convergence with similarities in cost
gradients across different initializations. In general,
swarm geometry produces more limited relative mo-
tion with significantly more predictability in regards
to which measurements are available to which ob-
servers. Constellation geometry and eccentric orbits
produce more extreme relative motion with irregu-
lar functional relationships between design parame-
ters and measurement availability.

The successful application of automatic optimiza-
tion to two different scenarios demonstrates that it is
possible to leverage topological, analytic and numeric

17



6. Conclusion

Fig. 11: Cost progressions for 20 random initializations of Case 1 (top) and Case 2 (bottom) towards globally
optimal cost J∗ and its corresponding J∗

Σ. Explore steps are marked by circles.

methods for effective observability-aware space sys-
tem design under realistic dynamics and constraints.
However, given the wide range of possible design pa-
rameters, cost tunings and mission scenarios, it is de-
sirable to be able to guarantee convergence to a global
minimum. Future work will focus on formulating a
convex reduced-order model which captures the un-
derlying nonlinear observability trends of angles-only
space systems, to which convex optimization tech-
niques can be applied. The accuracy of output un-
certainty estimates will also be characterized via com-
parison to high-fidelity simulations using the ARTMS
navigation architecture [9].

6. Conclusion

This paper constructs a set of unified observability
analysis and design optimization tools for angles-only
navigation of distributed space systems. To analyti-
cally determine whether a system is observable, a sys-
tem graph topology representation is developed. The
topology accounts for limited communication, visi-
bility constraints, and applies weighted edges to enu-
merate unique bearing angle measurements available
to an observer. By applying Lie derivative results, it
is determined that observer spacecraft may estimate

their own orbits and their targets’ orbits if the sum of
edge weights directed to the observer’s node is greater
than or equal to the size of the observer’s subgraph.

To numerically assess the achievable state uncer-
tainty of an angles-only system, the observer state
covariance is estimated using measurement sensitiv-
ity and noise matrices. The numeric method is aug-
mented with new inclusions of time-varying physi-
cally correlated dynamics noise and partial measure-
ment availability. Observability assessments for vary-
ing orbit geometries and estimated states reveal that
observer clock offsets, differential ballistic coefficients
and sensor biases are observable with angles-only mea-
surements. Observability is strongest when target
relative motion is highly nonlinear, geometrically dis-
tinct, and large in magnitude. The analytic observ-
ability conditions are verified numerically by comput-
ing the observability of all two- and three-spacecraft
subsystems and remain consistent regardless of orbit
geometry or dynamics model fidelity.

To automatically optimize angles-only observabil-
ity, the analytic and numeric methods are placed wi-
thin a quasi-Newton optimization framework. A flex-
ible cost function is developed to balance system costs
with navigation performance. The PQN-BFGS me-
thod is applied for box-constrained optimization with
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an added exploration step to prevent convergence to
non-convex local minima. Two case studies are ex-
plored: a distributed science swarm in low lunar or-
bit and a space situational awareness constellation
in medium lunar orbit. Each converges to a global
minimum for 50 random initializations and the opti-
mal designs successfully fulfil navigation performance
constraints under realistic measurement conditions.
The method therefore demonstrates strong potential
for automatic observability-aware design. Future re-
search will investigate problem reformulation via a
convex reduced-order observability model, to provide
mathematical guarantees of reaching a globally opti-
mal result, and treatment of other navigation archi-
tectures such as range-only methods.
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