ARTMS: Enabling Autonomous Distributed Angles-Only Orbit
Estimation for Spacecraft Swarms

Adam W. Koenig!, Justin Kruger?, Joshua Sullivan®, and Simone D’ Amico

Abstract— This paper presents the design and expected per-
formance of the Absolute and Relative Trajectory Measurement
System (ARTMS), which is a software payload that provides
autonomous, distributed navigation capability for spacecraft
swarms in deep-space using low-cost optical sensors. This
payload combines key innovations of recent works by the
authors to overcome four major shortcomings of previous
flight demonstrations of angles-only navigation: 1) lack of
autonomy and reliance on accurate a-priori information from
the ground, 2) inability to accommodate multiple observers
and targets, 3) reliance on frequent translational maneuvers
to improve observability, and 4) inability to estimate the
absolute orbit of the observer satellite. The first innovation is a
target detection and tracking algorithm that robustly identifies
multiple targets across images from a single camera without
requiring a-priori relative orbit knowledge. Second, a new
batch orbit determination algorithm based on relative orbital
elements provides estimates of the orbits of all spacecraft in
the local swarm using a one-dimensional sampling scheme to
accurately resolve the range to each target. Third, a sequential
orbit determination algorithm based on the unscented Kalman
filter continuously estimates the orbits and auxiliary param-
eters of the local swarm by seamlessly fusing measurements
from multiple observers exchanged over an inter-satellite link.
Functionality and performance of ARTMS are demonstrated
through a sensor-in-the-loop simulation of fully autonomous
angles-only orbit estimation using two observers in low earth
orbit with no simplifying assumptions, which has never before
been shown in literature. The results demonstrate that the
ARTMS payload meets key needs of future deep space missions
by providing autonomous, robust, and scalable absolute and
relative navigation capabilities using low-cost hardware with
minimal reliance on maneuvers and a-priori information.

I. INTRODUCTION

While formation flying and spacecraft swarm technologies
have received a great deal of attention in recent literature,
the majority of missions to date have been deployed in
earth orbit [1], [2], [3], [4]. Accordingly, the navigation
systems for these missions assume the availability of external
metrologies such as GNSS signals and frequent contact with
the ground. To enable deployment of satellite swarms and
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formations in deep space, it is necessary to develop new self-
contained navigation systems characterized by a high degree
of autonomy and robustness. It is also desirable to minimize
the technical and financial budgets required for associated
hardware. Angles-only navigation is a promising technology
for deep space missions because vision-based sensors (VBS)
are already ubiquitous on modern spacecraft in the form
of star trackers. These sensors are passive and inexpensive
with a high dynamic range (hundreds of kilometers or more)
and require minimal mass, volume, and power budgets [5].
If the spacecraft are equipped with an inter-satellite link
(ISL), which is already required for any form of cooperative
navigation, measurements from multiple observers can be
fused to improve performance. Accordingly, angles-only
navigation will generally require no additional hardware even
when used on small and inexpensive spacecraft.

Angles-only navigation has been tested on orbit, most
notably in the ARGON experiment in 2012 [6] and in the
AVANTI experiment in 2016 [7], [8], [9]. However, these
demonstrations are characterized by four major deficiencies
that must be overcome to meet the needs of future mis-
sions. These limitations are: 1) inability to accommodate
multiple observers and multiple targets, 2) lack of autonomy
and reliance on accurate a-priori relative orbit information
from the ground, 3) reliance on external knowledge of the
observer’s absolute orbit (e.g. from a GNSS receiver), and 4)
reliance on frequent translational maneuvers to resolve the
weakly observable inter-spacecraft separation. Other authors
have produced more sophisticated algorithms for individual
navigation tasks such as target detection and tracking [10],
initial relative orbit determination [11], [12], and sequential
filtering [13], but these approaches each suffer from a subset
of the aforementioned limitations, or are otherwise unsuitable
for the space-based angles-only navigation context and its
associated constraints.

To overcome these limitations and meet the navigation
needs of future swarming missions in deep space, this
paper presents a high-level overview of the Absolute and
Relative Trajectory Measurement System (ARTMS), which
is a self-contained software payload first proposed in [14]
that provides distributed, autonomous navigation capability
for spacecraft swarms in any planetary orbit regime. This
payload will be tested on orbit in the Starling Formation-
flying Optical eXperiment (StarFOX), which is part of the
Starling] mission in development at NASA Ames Research
Center [15]. The only hardware requirements posed on a
spacecraft with ARTMS are that it must have a VBS and an
ISL. If available, an absolute orbit metrology system such



as a GNSS receiver can be included to improve navigation
performance. ARTMS is divided into three modules that are
based on algorithms recently developed by the authors: im-
age processing (IMP) [16], batch orbit determination (BOD)
[17], and sequential orbit determination (SOD) [18]. Each
module is developed to operate with minimal a-priori infor-
mation and exploit absolute and relative state knowledge as
it becomes available. Overall, the ARTMS payload provides
estimates of the orbits of the host spacecraft and each target
detected by the onboard sensor as long as each observer is
provided with an estimate of its orbit at a single epoch.

After this introduction, key modeling assumptions are
provided in Section [lI] and a high-level overview of the
payload and its constituent modules is provided in Sections
Next, Section presents a high-fidelity sensor-in-
the-loop simulation that exercises the autonomous navigation
capability of the ARTMS payload on two cooperative ob-
server satellites in low earth orbit (LEQO). The included sensor
is a Nano Star Tracker by Blue Canyon Technologies [5] that
is stimulated by the Space Rendezvous Laboratory’s Optical
Stimulator (OS) testbed [19]. In this scenario, each observer
is provided with a single estimate of its absolute orbit,
which it uses to track targets, compute an initial estimate
of the swarm state using measurements from the onboard
sensor, and then sequentially refine the state estimate using
measurements from both observers. This scenario is repre-
sentative of a planned test in the StarFOX experiment [15]
and future deep space missions, which will not have access
to external metrologies such as GNSS. Finally, conclusions
are summarized in Section

II. MODELING PRELIMINARIES

Because angles-only navigation is known to be charac-
terized by weak observability [20], proper selection of the
state parameterization is particularly important to maximize
accuracy of state estimates and robustness to errors in a-
priori information. Specifically, the state definition should
be selected to meet two objectives: 1) separate weakly
and strongly observable terms to enable use of separate
estimation techniques and 2) maximize accuracy and compu-
tational efficiency of orbit propagation. To meet both of these
objectives, the swarm state is defined using quasi-nonsingular
absolute and relative orbital elements. The absolute orbit o
is defined as

a a
ey ecos(w)

ael®| = esin'(w) 0
i i
Q Q
u w+M

where a, e, i, Q, @, and M are the canonical Keplerian
orbit elements including the semimajor axis, eccentricity,
inclination, right ascension of the ascending node (RAAN),
argument of periapsis, and mean anomaly, respectively. The
relative orbit of each target detected by the onboard sensor,
denoted da, is described by the ROE adopted by D’ Amico

[21]. Each of these ROE is function of the orbit elements of
the target (denoted by subscript #) and observer (denoted by
subscript o) as given by
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These state definitions have been well-studied in literature,
resulting in development of several accurate analytical dy-
namics models for earth orbit regimes (e.g. [22] and [23]).
Also, these states are slowly varying and enable accurate
numerical integration using Gauss’s variational equations
with large time steps [24]. More importantly, the weakly
observable range to each target is primarily captured by the
O A term in most formation-flying relative motion geometries.
Additionally, it has been shown that the semimajor axis
of the observer’s orbit is strongly observable using bearing
angle measurements to a single target [17]. Combined,
these properties enable accurate and computationally effi-
cient estimation algorithms with minimal reliance on a-priori
information.

III. ARTMS PAYLOAD OVERVIEW

To simplify subsequent discussions, the following termi-
nologies are adopted in this paper. The “observer” refers to
the spacecraft hosting the instance of the ARTMS payload
being discussed. A “remote observer” is another spacecraft
hosting an ARTMS payload that is providing measurements
over the ISL. The “local swarm” includes the observer and
all “targets”, which are spacecraft or resident space objects
detected by the onboard VBS. In most scenarios of interest,
the targets will include one or more remote observers.

A high-level overview of the ARTMS software payload
is shown in Figure [l| including modules (green), exter-
nal systems (gray), and exchanged data (blue). ARTMS is
divided into three main modules: IMP, BOD, and SOD.
The payload interfaces with the onboard VBS, the ISL,
the ground segment, and (if available) an onboard GNSS
receiver. The VBS provides time-tagged raw images to the
payload. The ground segment provides telecommands as well
as maneuver plans and orbit estimates for each observer
in the swarm and receives telemetry from each instance of
ARTMS. The ISL communicates orbit estimates and angles
measurements between all observers in the swarm. If the
spacecraft is equipped with a GNSS receiver, it provides the
payload with position/velocity/time (PVT) measurements to
replace less timely orbit estimates from the ground.

The IMP module converts images from the VBS to time-
tagged batches of bearing angles to each detected target,
which are provided to the BOD and SOD modules. The
module requires only a coarse estimate of the observer’s
orbit, but uses relative orbit information from SOD (when
available) to reduce computation cost. The BOD module
computes orbit estimates for all spacecraft in the local swarm
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using only a time-tagged estimate of the observer’s orbit
and batches of bearing angles to each target provided by
IMP. This swarm estimate is provided to SOD for both
initialization and fault detection. Finally, the SOD module
uses the swarm estimate from BOD to initialize a UKF that
continuously fuses measurements from the IMP module and
remote observers to estimate the orbits of all spacecraft in
the local swarm as well as auxiliary parameters (e.g. ballistic
coefficients or differential clock offsets). These estimates
are provided to the ground and to the IMP module to
reduce computation cost of image processing. More detailed
descriptions of each ARTMS module are provided in the
following sections.

IV. IMAGE PROCESSING

The objective of the IMP module is to produce batches of
time-tagged bearing angle measurements to each target using
a coarse estimate of the observer’s orbit and images provided
by the onboard VBS. This is accomplished in two phases.
First, each incoming image is processed and reduced to a
set of inertial bearing angles that may correspond to resident
space objects. Second, these candidate bearing angles are
used to track known targets and detect new targets using an
approach inspired by multi-hypothesis tracking (MHT) [10].

The first phase of IMP uses a set of well-known algo-
rithms that have extensive flight heritage. First, a centroiding
algorithm is used to simplify the raw image into a list of
pixel cluster centroids. Second, these centroids are converted
to unit vectors in the sensor frame using the calibrated
sensor model. Next, the pyramid star identification algorithm

Architecture of ARTMS payload updated from [14] including external systems (gray), software modules (green), and exchanged data (blue).

[25] is applied to remove stellar objects (SO) from the
list of pointing vectors. Uncatalogued SO are detected by
considering objects with unchanging inertial unit vectors
between images. Similarly, camera hotspots are removed
by considering objects with unchanging pixel coordinates.
The VBS attitude is computed from the pointing vectors to
identified stars in the inertial and sensor frames using the
g-method [26]. The remaining minimalistic set of inertial
unit vectors (and corresponding bearing angles in the sensor
frame) likely correspond to known targets or other unknown
objects in the field of view (FOV).

In the second phase, these measurement candidates must
be consistently assigned to new targets or targets that are
currently being tracked without requiring a-priori relative or-
bit knowledge. To accomplish this, the IMP module employs
the new Spacecraft Angles-only MUItitarget tracking System
(SAMUS) [27], which has only two key requirements: 1) a
coarse estimate of the observer’s absolute orbit must be pro-
vided, and 2) targets must not perform translational maneu-
vers during the tracking period. SAMUS is valid for orbits of
arbitrary eccentricity and has been specifically designed to
meet the constraints of risk-averse angles-only navigation in
space, i.e. to achieve close to 100% measurement assignment
precision with low measurement frequencies and limited
computational resources.

SAMUS applies the core concept of MHT in that as mea-
surements arrive, many simultaneous hypotheses are main-
tained as to how they can be associated into target tracks.
The algorithm converges towards the correct hypothesis over
time, with the aim of improved robustness. MHT is chosen



as a basis because it is mature and demonstrably accurate,
with its primary disadvantage being the need to frequently
and heuristically trim hypotheses for real-time computation
[28]. To overcome this, SAMUS applies domain-specific
knowledge to develop precise trimming criteria.

D’Amico defines a mapping between the ROE and a
target’s curvilinear position vector Or in the observer’s
radial/tangential/normal (RTN) reference frame [21], as
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This form applies to near-circular orbits, and Sullivan pro-
vides a more general mapping for eccentric orbits in [29].
Note that above, u, is the only quickly-varying term, while
all other terms vary slowly in the presence of perturbations
and are effectively constant on timescales of image-to-image
tracking. Thus, target motion is described by periodic, para-
metric functions with known form. Even if the specific ROE
in Equation [3| are unknown, its form provides expectations
regarding target motion that can be leveraged.

Perturbing forces, such as spherical harmonic gravity and
atmospheric drag, can disturb the form of Equation [3] How-
ever, in angles-only scenarios of interest, swarm members
are relatively close together in inertial space and are affected
similarly by perturbations. By synchronously differencing the
measurements of different targets in bearing angle space —
in essence, using one track as a virtual, moving origin for
another — perturbation effects are approximately cancelled
between targets, recovering motion as per Equation [3]

Given a set of past bearing angles measurements in a track
and corresponding estimates of the observer’s absolute orbit,
Equation [3] can be rearranged into a pair of separable linear
systems in azimuth and elevation [27]. The unknown terms,
which are scaled ROE equivalents in bearing angle space, can
be solved for via least squares as long as at least three past
measurements exist. Subsequently, upcoming measurements
in a new image can be predicted using the fitted model and
the observer’s orbit estimate.

To assess which hypotheses are physically reasonable,
SAMUS applies a set of kinematic rules derived from the
parametric motion model. Only tracks which pass all rules
are propagated. Briefly, the rules are summarised as:

1) Track velocities must be below a set maximum

2) Track velocities must be consistent over time

3) Tracks should generally not feature acute angles

4) Tracks should turn in a consistent direction

5) New data must be close to the predicted measurement

Their application greatly increases efficiency of MHT by
preventing formation of unlikely tracks. Mathematical defi-
nitions for these rules are provided in [27]. When multiple
tracks pass all rules, SAMUS scores propagated tracks via
ten criteria which assess how well each fulfills the expec-
tations of Equation [3] and their past motion. In contrast to
traditional MHT methods — which often rely on a single
Mahalanobis distance metric for scoring — SAMUS aims to

be more robust. Often, target tracks intersect or are in close
proximity in the image plane, or motion between images
is on the order of VBS noise. A single scoring metric
is therefore not robust. By using a larger set of metrics,
consensus supports the correct choice over time, even if
some temporarily support incorrect hypotheses. Additionally,
scoring does not require probabilistic estimates of false
alarm densities or target decay rates, which are not easily
obtainable for spacecraft.

To initialize new tracks, SAMUS employs the Density-
Based Spatial Clustering of Applications with Noise (DB-
SCAN) algorithm [30]. DBSCAN clusters require > np
points within small radius &p. Because targets are in similar
orbits to observers, their velocities compared to other objects
in the FOV are low. Previously untracked targets are initial-
ized by applying DBSCAN to the merged set of unidentified
measurements from the past several images, and applying
the SAMUS kinematic rules to found clusters.

Finally, given the use of visual measurements, tracking is
often interrupted by orbit eclipse periods. To connect shorter
tracks on either side of an eclipse, the aforementioned linear
system fit is computed for every possible set of paired tracks.
The combination of compatible pairs which produces the
least fitting residuals is chosen as output.

SAMUS is also able to cooperate with SOD and apply
target state knowledge. If available, target state estimates
from SOD are propagated into the current epoch to pro-
vide predicted track measurements. The kinematic rules are
replaced by a validity region around the predicted measure-
ment, computed via an unscented transform of the target state
covariance. The Mahalanobis distance between predicted and
assigned measurement is employed for track scoring. Figure
[ presents an overview of core SAMUS operations, with
further detail provided in [27].
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Hypothesis propagation: track-oriented
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Tracks kinematic criteria root node updates

Track finalization:
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Fig. 2. SAMUS algorithm summary and core sequence of operations.
Dashed lines denote steps that only occur at relevant epochs.

V. BATCH ORBIT DETERMINATION

The BOD module must be able to produce orbit estimates
for the local swarm with sufficient accuracy to initialize the
SOD module using only a coarse estimate of the observer’s



orbit and batches of bearing angles to each target from the
onboard sensor. For simplicity, it is assumed that targets do
not perform any translational maneuvers between the epochs
of the first and last measurement of the provided measure-
ment batch for each target. State estimation is accomplished
using an algorithm based on [17] that sequentially estimates
the relative orbits of each target while simultaneously refin-
ing the estimate of the semimajor axis of the observer’s orbit.
When used in LEO, the algorithm uses a fully analytical
dynamics model including the earth oblateness J, perturba-
tion developed by the authors to minimize computation cost
[22]. For each target, the estimation process is a four-step
procedure that was inspired by the work of Ardaens [12].
First a one-dimensional family of state estimates is computed
for user-specified values of OA (selected based on system
limitations such as sensitivity of the VBS) using iterative
batch least squares refinement until either 1) a user-specified
iteration limit is reached, or 2) the step size is smaller than a
user-specified convergence threshold. Second, the final state
estimate is selected as the candidate state estimate with the
smallest measurement residuals. A conceptual illustration of
the BOD state selection process for a single target is shown in
Figure [3| including specified values of 04 and measurement
residuals for selected and rejected state estimates. Third, the
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Fig. 3. Conceptual illustration of converged measurement residuals for

rejected (gray) and selected (black) state estimates at specified values of
S8 for a single target in the BOD module.

measurement noise matrix for each measurement (denoted
Ryensor) is estimated using the measurement residuals corre-
sponding to the final state estimate. Fourth, the covariance
for estimated state components P, is computed as given by

Pest = Y. (NRyensor + Y priorPprior Y prion) Yeyr - (4)

prior) ~ est

where Y}, is the pseudoinverse of the measurement sen-
sitivity matrix for estimated state components, Y o is the
measurement sensitivity matrix for a-priori information (orbit
elements other than the semimajor axis, ballistic coefficients,
sensor biases, etc.), Py, is the uncertainty of the a-priori
information, and N is the number of provided bearing angle
measurements. This formulation allows the BOD module to
seamlessly transition between domains where uncertainty is
driven by sensor performance and by errors in the a-priori
information. Finally, the ROE estimates for each target are
appended to the refined estimate of the observer’s absolute
orbit, forming a complete estimate of the state of the local
swarm.

It was demonstrated in [17] that this estimation approach
can provide relative orbit estimates with range errors of less
than 20% (3-0) in the presence of absolute orbit errors
of up to 2 km using only two orbits of bearing angle
measurements in a wide range of orbit regimes. Additionally,
the computation time required to estimate the state of each
target with two orbits of measurements is approximately five
seconds on a desktop PC with a 3.5GHz processor using the
analytical dynamics model. The computation cost increases
linearly with the number of targets in the local swarm,
allowing the algorithm to efficiently scale to large swarms.

VI. SEQUENTIAL ORBIT DETERMINATION

The SOD module continually refines estimates of the
orbits of all spacecraft in the local swarm as well as auxiliary
parameters (e.g. sensor biases, ballistic coefficients, and
differential clock offsets) by seamlessly fusing measurements
from all observers transmitted over the ISL. The SOD
module is based on a the UKF, which preserves higher order
moments in the probability distribution to enable maneuver-
free convergence using angles-only measurements from a
single observer [18]. Three additional features are included
in the SOD module to to maximize performance using mea-
surements from multiple observers. First, adaptive process
noise estimation is used to improve convergence speed and
robustness to errors in the dynamics model [31]. Second,
the state definition is organized in a way that exploits the
structure of the Cholesky factorization to reduce the number
of calls to the orbit propagator by almost a factor of two [32].
Third, measurements from remote observers are assigned to
tracked targets using selection criteria based on the Maha-
lanobis distances between the estimated bearing angles to
each target and each candidate measurement. Let 0 denote
the Mahalanobis distance between the jth measurement from
the remote observer and the predicted measurement to the
kth target tracked by the local observer (which accounts
for all relevant state uncertainties). To minimize erroneous
assignments, the jth measurement from the remote observer
is assigned to the kth target if three conditions are satisfied:

Condition 1) 0j; < €ug5ign

Condition 2) Oy > €umpig VI # j

Condition 3) G}, > Euupig VP # k
where €55ign and €qppie are user-specified parameters that
satisfy €umpig > €assign > 0. These conditions ensure 1) the
measurement is close to the modeled measurement to the
target using the current state estimate, 2) there is no other
candidate measurement that fits the estimated state of the
target, and 3) there is no other target with a state estimate
that fits the measurement. Figure ] includes conceptual illus-
trations of four possible cases of modeled and observed mea-
surements from a remote observer which (from left to right)
show all conditions satisfied and violations of Condition 1,
Condition 2, and Condition 3, respectively. Together, these
conditions ensure that measurements are only assigned when
the observed and modeled measurements uniquely agree with
a statistical certainty determined by the values of &4, and
E.mbig- The values of these parameters should be selected



based on the expected number of targets, relative motion
geometry, sensor noise, and available orbit knowledge for
general swarming missions. However, for scenarios similar
to those presented in the following section, the authors have
found that setting €u5ign = 3 and &gpi; = 6 provide robust
measurement assignment performance.

Measurement
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Acceptable
measurement
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Candidate
measurement

Measurement
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Target
ambiguity

Measurement Large measurement
assigned error

Fig. 4. Illustration of conditions in which all measurement criteria
are satisfied (left) and conditions that violate each of the measurement
assignment criteria (right).

VII. VALIDATION

The functionality and performance of the payload are
validated through hardware-in-the-loop simulation of a chal-
lenging scenario that will be part of the upcoming StarFOX
experiment. The selected test case includes four spacecraft:
the observer and three targets, one of which is also a remote
observer. The orbit of the observer and relative orbits of
the three targets at the start of the simulation are provided
in Table [l The relative orbits for this simulation were
selected to be representative of the Starling mission when
the formation is deployed in passive safety ellipses, which
are known to provide better observability using angles-only
measurements [17]. The observer’s sensor is pointed in the
flight direction throughout the simulation to ensure that all
three targets are always visible. Target 3 was selected as the
remote observer because it can see all three other spacecraft
with a single sensor pointed in the anti-flight direction.
An overview of the absolute and relative motion of this
formation along with the selected sensor orientation is shown
in Figure [3

TABLE I
INITIAL ABSOLUTE AND RELATIVE ORBITS FOR SIMULATION.

Absolute orbit
ex(=)  e(=) (%) Q  u(”)
0.0014  0.0014 98 40 105
Relative orbits

- a (km)
Observer 6978

ROE (m) ada adl adey adey  abiy  adi,
Target 1 0.0 65000 0 3000 0 3000
Target 2 0.0 133000 0 2600 0 2600
Target 3 0.0 200000 0 1200 0 1200

The ARTMS operations sequence for this simulation is
described in the following. First, each observer is provided
with an estimate of its position and velocity at a single epoch
with 1-o errors of 10 m and 0.01 m/s per axis, which is

Sensor fields of view \
/ Noncooperative

ISL
messages
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Absolute ¥~ [ )
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path

orbit paths

Fig. 5. Illustration of orbits of observers, targets, and sensor orientations
in validation simulation.

consistent with estimates provided by GNSS receivers or
the Deep Space Network. These estimates enable proper
orientation of the sensor on each observer and allow the IMP
modules to begin detecting and tracking targets. After three
hours (two orbits), the BOD module on each observer is
called on each observer to compute refined estimates of its
absolute orbit and the relative orbits of all targets detected by
the onboard sensor. Once this estimate is computed, the SOD
modules on each observer continuously refine the swarm
state estimates using measurements form both observers
exchanged over the ISL.

The procedure used to compute the simulation inputs and
the ground truth data (which is used to assess navigation
performance) is as follows. First, the ground truth data is
computed by propagating the orbits of each observer and
target for 24 hours using a high-fidelity numerical orbit prop-
agator including all substantial perturbations in earth orbit
(geopotential, atmospheric drag, solar radiation pressure, and
lunisolar third body gravity) [33]. The ground truth data is
used to synthesize images of background stars and the other
spacecraft as seen by each observer. These synthetic images
are then rendered on the display in the Space Rendezvous
Laboratory’s OS testbed [19]. The display is then imaged
by a Blue Canyon Technologies Nano Star Tracker [5],
producing the images that are provided to the ARTMS
payload for each obserrver. An example image collected by
the sensor is shown in Figure [6] along with identifications
of stars, targets, and unidentified non-stellar objects. The
initial position and velocity estimates for each observer are
computed by corrupting the ground truth initial orbits values
with zero-mean Gaussian noise with the aforementioned
distribution.

The formal covariance (shaded) and estimation errors
(lines) for the SOD module of the observer (as specified
in Table [) over the course of the simulation are shown in
Figure [/| The estimation errors of the absolute and relative
orbits are converted to errors in position and velocity in the
RTN frame to provide a simple geometric interpretation of
the navigation accuracy. The plots start at the 3hr mark when
the SOD module is initialized with the estimate from the
BOD module, which is subject to errors of a few kilometers.
The plots on the left side indicate the difference between
the estimated position and velocity of the observer and the
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Fig. 6. An example image from the star tracker and OS with IMP
classifications.

ground truth value. It is evident that the estimate converges
to steady state position errors of under 1 km and velocity
errors of less than 0.5 m/s within twelve hours. Additionally,
the formal covariance is consistent with the estimation error
throughout the simulation. The estimation errors for the
relative position and velocity of each target in the RTN
(shown in the right plots) also converge to steady state error
within twelve hours The steady-state errors in the along-track
separations to each target are under 100m and the radial and
normal relative position errors are less than 10m. The steady-
state relative velocity errors do not exceed 1 cm/s.

Because the relative position and velocity errors include
combinations of errors in estimated state parameters, key
steady-state error metrics in the absolute and relative orbits
are provided in the following. First, the steady state error in
the semimajor axis of the absolute orbit is only 34m, which
is more than an order of magnitude less than the observed 1
km absolute position error. Second, the steady state formal
covariance and estimation error for adA for each target are
less than 0.5% of the true separation. The errors in the other
ROE (scaled by a for comparison purposes) are less than
0.1m per kilometer of separation.

Overall, these results show that the ARTMS payload
provides sufficient navigation accuracy for a wide range of
science missions in deep space as well as space situational
awareness applications in earth orbit with minimal reliance
on a-priori information and translational maneuvers.

VIII. CONCLUSIONS

This paper presented an overview of the Absolute and
Relative Trajectory Measurement System (ARTMS), which
is a software payload that provides autonomous, distributed,
and scalable navigation for spacecraft swarms in deep space
using inexpensive optical sensors. The payload consists of
three modules: image processing, batch orbit determina-
tion, and sequential orbit determination. Image processing
provides batches of measurements to each observed target
using time-tagged images from the onboard camera and a
single coarse estimate of the observer’s orbit. The batch orbit
determination module uses the estimate of the observer’s
orbit and batches of bearing angles to each target to provide

estimates of the orbits of each spacecraft or resident space
object in the local swarm. Finally, the sequential orbit deter-
mination module estimates the orbits of the local swarm as
well as auxiliary parameters such as ballistic coefficients or
differential clock offsets by seamlessly fusing measurements
from multiple observers received over the inter-satellite link
in an unscented Kalman filter.

The functionality and performance of the payload were
demonstrated through a first-of-a-kind sensor-in-the-loop
simulation of autonomous angles-only navigation using two
cooperative observers. In this simulation, each observer is
only provided with a single estimate of its orbit, images
from the onboard sensor, and measurements from a remote
observer transmitted over the inter-satellite link. It is found
that the payload is able to initialize the sequential filter
with range errors of only a few kilometers after two orbits
and converge to steady state within ten hours. The system
provides navigation solutions with steady state absolute
position and velocity errors of better than 1 km and 0.5 m/s,
range errors of better than 250 m, and estimates of other
relative orbital elements with errors no larger than 0.1m per
kilometer of separation. These results show that the ARTMS
payload provides accurate, robust, and scalable navigation
capability for spacecraft swarms with minimal reliance on
a-priori information, meeting a critical need for future deep-
space science and space situational awareness missions.
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