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The Starling Formation-Flying Optical Experiment (StarFOX) is intended as the first on-orbit demonstration of

autonomous distributed angles-onlynavigation for spacecraft swarms. StarFOXapplies the angles-onlyAbsolute and

Relative Trajectory System (ARTMS), a navigation architecture consisting of three innovative algorithms: image

processing, which identifies and tracks multiple targets in images from a single camera without a priori relative orbit

knowledge; batch orbit determination, which autonomously initializes orbit estimates for visible swarm members;

and sequential orbit determination, which continuously refines the swarm state by fusing measurements from

multiple observers exchanged over an intersatellite link. Nonlinear dynamics and measurement models provide

sufficient observability to estimate absolute orbits, relative orbits, and auxiliary states using only bearing angles

without maneuvers. StarFOX will be conducted using a four-CubeSat swarm as part of the NASA Starling mission,

and simulations of experiment scenariosdemonstrate thatARTMSmeetsmissionperformance requirements.Results

indicate that mean bearing angle errors are below 35′′ (1σ), initial target range errors are below 20% of true

separation, and steady-state range errors are below 2% (1σ). Absolute orbit estimation accuracy is on the order of

100 m. Hardware-in-the-loop tests display robust navigation under a variety of conditions, enabling autonomous,

ubiquitous navigation with minimal ground interaction for future distributed missions.

Nomenclature

a = orbit semimajor axis
e = orbit eccentricity
f = orbit true anomaly
i = orbit inclination
M = orbit mean anomaly
P = state covariance matrix
R = measurement covariance matrix

~R = rotation matrix

r = orbit radius
r = absolute position vector
S = bearing angle measurement sensitivity matrix
t = time
t = time vector
u = orbit mean argument of latitude
x = estimated state vector
y = bearing angle measurement vector
z = bearing angle measurement batch
α = azimuth bearing angle
α = orbit state vector
Δv = magnitude of maneuver delta-v
δa = relative semimajor axis
δe = magnitude of relative eccentricity vector

δi = magnitude of relative inclination vector
δr = relative position vector
δα = relative orbit state vector
δλ = relative mean longitude
ϵ = elevation bearing angle
θ = phase of relative eccentricity vector
ϕ = phase of relative inclination vector
σ = standard deviation
Ω = orbit right ascension of the ascending node
ω = orbit argument of periapsis

Subscripts

est = related to an estimated quantity
meas = related to a measured quantity
model = related to a modeled quantity
prior = related to an a priori quantity
o = observer spacecraft
t = target object

Superscripts

I = inertial reference frame
R = observer radial/tangential/normal reference frame
V = observer camera-aligned reference frame
W = observer velocity-aligned reference frame

I. Introduction

D ISTRIBUTED space systems (DSSs) can offermany advantages
when compared to traditional monolithic spacecraft, including

improved accuracy, coverage, flexibility, robustness, and the ability
to achieve entirely new objectives [1]. This has led to the deployment
of a variety of DSS science missions [2–5], as well as the proposed
application of DSSs to areas such as space domain awareness (SDA)
[6] and on-orbit servicing, assembly, and manufacturing (OSAM)
[7]. However, robust navigation for DSSs remains a technological
challenge. The majority of DSSs have been deployed in Earth orbit,
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and their navigation systems therefore assume availability of external
metrologies such as Global Navigation Satellite System (GNSS) sig-
nals and frequent contact with the ground. Systems outside of Earth
orbit may instead navigate via the Deep Space Network (DSN) or
similar resources, but suchmethods impact timely decisionmaking for
missions and are not easily scalable to future DSSs. Furthermore,
navigation for non-cooperative objects such as space debris cannot
be performedwithGNSS. It is therefore necessary to develop new self-
contained navigation systems to enable usage of DSSs in more varied
scenarios, characterized by a high degree of autonomy and robustness.
Minimal technical and financial costs for associated hardware are
preferred so that miniaturized technology can be leveraged.
Angles-only navigation, in which observer spacecraft obtain bear-

ing angles to target space objects using onboard vision-based sensors
(VBSs), is a compelling technology in this context. VBSs are already
ubiquitous on modern spacecraft in the form of star trackers. These
sensors are passive and inexpensive with a high dynamic range and
require minimal mass, volume, and power budgets [8]. If DSS
observers are also equipped with an intersatellite link (ISL), as can
be implemented with typical radio frequency hardware, measure-
ments from multiple observers can be shared and fused to improve
navigation performance. Accordingly, angles-only navigation gen-
erally requires no additional hardware even when used on small and
inexpensive spacecraft. A further benefit is that optical sensors may
obtainmeasurements to and navigatewith respect to non-cooperative
targets. However, bearing angles do not provide explicit target range
information, which results in challenging observability conditions
[9,10]. Target range is onlyweakly observable, and it is often difficult
to simultaneously estimate absolute and relative orbit states [11].
These aspects have motivated extensive prior research into angles-

only navigation for spacecraft, which may be subdivided into three
primary tasks. First is the usage of sequential filtering techniques to
perform angles-only state estimation. Earlier studies have focused on
single-observer–single-target scenarios, in which angles-only obser-
vability is particularly challenging. Nevertheless, it has been demon-
strated that nonlinear filtering provides relative orbit observability
without requiring maneuvers [10], and absolute orbit observability
can potentially be achieved if observer and target orbits are suffi-
ciently different [12,13]. Recent work has explored usage of multiple
cooperative observers to achieve complete DSS orbit observability
[14,15]. The second task is the usage of batch measurement tech-
niques to perform initial angles-only orbit determination. Iterative
numeric techniques have been proposed, and they display promis-
ing accuracy for estimation of relative orbits and target range with
varying computational costs [11,16]. Other authors have suggested
computing relative orbit solutions using fewer measurements, via
application of second-order polynomial models [17] or second-order
state transition tensors [18] to resolve target range. The third task is
target tracking and measurement assignment, or how bearing angles
are obtained from images and consistently assigned to targets over time
so that orbit determination can be performed. Common target tracking
methods include global nearest neighbor (GNN), joint probabilistic
data association (JPDA), multihypothesis tracking (MHT), random
finite set (RFS), and machine learning (ML) approaches [19]. For in-
orbit tracking specifically, it has been suggested to apply probability
hypothesis density filtering [20] or domain-specific MHT [21].
While each of these algorithms shows varying degrees of promise, it

is crucial to note that there is substantial difficulty in bridging the gap
between individual algorithms that have beenverified in simulation and
a complete, integrated architecture suitable for flight which robustly
performs all three tasks. Practical constraints, including stringent mis-
sion requirements, software and hardware constraints, and system inte-
gration and validation, must be overcome. With this in mind, two prior
flight experiments have successfully demonstrated angles-only navi-
gation in orbit, as documented in literature. In 2012, the Advanced
Rendezvous using GPS and Optical Navigation (ARGON) experiment
enabled the rendezvous of twoSmallSats in lowEarth orbit (LEO) from
intersatellite separations of 30 to 3 km [22]. In 2016, the Autonomous
VisionApproachNavigation andTarget Identification (AVANTI) expe-
riment similarly conducted a rendezvous between a mothership Small-
Sat and deployed picosatellite from separations of 13 km to 50 m [23].

However, these demonstrations were characterized by four major
deficiencies that must be removed tomeet the needs of future missions:
1) inability to accommodate multiple observers and multiple targets in
the system,2) lackof autonomyand relianceon accurate a priori relative
orbit information from the ground to initialize navigation, 3) reliance on
external knowledge of the observer’s absolute orbit (e.g., from aGNSS
receiver) to maintain state convergence, and 4) reliance on frequent
translational maneuvers to resolve the weakly observable interspace-
craft separation.
To overcome these limitations andmeet the navigation requirements

of futureDSSmissions, this paper presents a high-level overviewof the
angles-only Absolute and Relative Trajectory Measurement System
(ARTMS). ARTMS is a self-contained architecture first proposed in
[14] that provides distributed, autonomous, scalable navigation capa-
bilities for DSSs orbiting an arbitrary central body. ARTMS consists
of three core modules based on algorithms recently developed at
Stanford’s Space Rendezvous Laboratory (SLAB): image processing
(IMP) [21], batch orbit determination (BOD) [11], and sequential orbit
determination (SOD) [14]. Each module is designed to operate with
minimal a priori information and exploit absolute and relative state
knowledge as it becomes available. Overall, ARTMS provides real-
time orbit estimates for the host spacecraft and each target detected
by the onboard sensor as long as each observer is provided with an
estimate of its orbit at a single epoch. Optional auxiliary states such as
clock biases, ballistic coefficients, and sensor biases can also be esti-
mated using angles-only measurements. The only hardware require-
ments posed on a spacecraft with ARTMS are that it must have a VBS
and an ISL. An optional absolute orbit metrology system such as a
GNSS receiver can be included to improve navigation performance.
ARTMSwill demonstrate these enhanced angles-only navigation

capabilities during the Starling Formation-Flying Optical Experi-
ment (StarFOX), as described and motivated in this paper. StarFOX
is one of four experimental payloads of the NASA Starling mission
in development at the NASA Ames Research Center [24]. Starling
consists of four 6U CubeSats in LEO and aims to increase the
readiness of four enabling technologies for spacecraft swarms:
autonomous operations, communications and networking, maneu-
ver planning and execution, and absolute and relative navigation.
Starling is scheduled to launch in 2023 with a minimum mission
duration of six months. A series of multiday StarFOX experiment
blocks is designed to explore ARTMS’s flexibility for angles-only
navigation in both single-observer and distributed multi-observer
scenarios, using either ground-assisted or autonomous state initial-
izations, with orwithout GNSS availability, in three different swarm
formations. The experiment campaign subsequently builds upon
ARGON and AVANTI for a more wide-ranging and ambitious
demonstration of spaceborne angles-only navigation.
To ensure that ARTMS is able to achieve StarFOX goals, a pre-

flight testing and verification campaign is conducted using software-
and hardware-in-the-loop (HIL) simulations. First, unification of
ARTMS algorithms into the complete flight software is motivated
by extensive Monte Carlo characterization of individual IMP, BOD,
and SOD module performance in the context of StarFOX mission
requirements. Next, performance of the complete ARTMS architec-
ture is assessed using high-fidelity simulations representative of
planned StarFOX experiments, for varying swarm geometries and
measurement conditions. HIL elements include usage of a Nano Star
Tracker (NST) from Blue Canyon Technologies [8] as stimulated by
SLAB’s Optical Stimulator (OS) testbed [25] to generate image
measurements with realistic noise characteristics; usage of a Tyvak
Endeavour CubeSat processor to assess ARTMS computation costs;
and measurement error characterization for each NST flight unit
when integrated with the spacecraft.
After this introduction, key modeling assumptions are provided

in Sec. II. A high-level overview of ARTMS and its constituent
modules is provided in Sec. III. Section IV introduces and moti-
vates the StarFOX flight experiment. Section V presents Monte
Carlo performance characterization of individual ARTMS mod-
ules, followed by validation of the integrated ARTMS flight soft-
ware. Section VI presents HIL test results. Conclusions are given in
Sec. VII.
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II. Modeling Preliminaries

A. Measurement Model

ARTMS produces angles-only measurements by computing the
time-tagged bearing angles to objects detected in VBS images. Two
rotating coordinate frames are defined. First, consider the radial/
tangential/normal (RTN) frame of an observer spacecraft, denoted
R. It is centered on and rotates with the observer and consists of

orthogonal basis vectors x̂R (directed along the observer’s absolute

position vector); ẑR (directed along the observer’s orbital angular

momentum vector); and ŷR � ẑR × x̂R [26]. Similarly, define a

frame W using ŷW (directed along the observer’s velocity vector);

ẑW � ẑR; and x̂W � ŷW × ẑW .W only differs fromR by a rotation

of the observer flight path angle ϕf about ẑR with ϕf ≈ 0 in near-

circular orbits [26]. Finally, define the observer VBS coordinate

frame V consisting of orthogonal basis vectors x̂V ; ŷV ; ẑV , where
ẑV � x̂V × ŷV is alignedwith the camera boresight. TheVBSmay be
pointed as necessary to keep targets in the field of view (FOV). In the
case of StarFOX, it is chosen to always point the camera boresight in

the velocity or antivelocity direction for simplicity, such that ẑV is

aligned with �ŷW . Figure 1 illustrates this scenario.
Bearing angles consist of azimuth and elevation �α; ϵ�⊤ and subtend

the line-of-sight vector δrV from the observer to the target. The
measurement model y for the bearing angles from observer to target
is described by [14]

δrV � rVt − rVo � �
δrVx ; δr

V
y ; δr

V
z

�⊤ (1)

yV
�
δrV

� � �
α
ϵ

�
V
�

"
arcsin

�
δrVy ∕

��δrV��
2

�
arctan

�
δrVx ∕δrVz

�
#

(2)

System measurements and states are also referenced with respect to
an inertial reference frame centered on an arbitrary central body,
denoted I (commonly a planet-centered, moon-centered, or sun-
centered frame). The inertial frame applied during StarFOX is the
Earth-centered inertial J2000 frame. Bearing angles are related to the

inertial frame by rotating δrV into I , as per δrI � V ~R
I
δrV, where

V ~R
I
denotes a rotation from frame V into frame I . This rotation is

generally computed by performing attitude determination using stars

identified by the VBS [22]. Other relevant rotations
R ~R

I
and

W ~R
I

can be computed using the observer’s absolute orbit estimate. Note
that, in practice, VBSmeasurement availability is affected by optical
visibility constraints, including target eclipse periods, sensor sun-
blinding, sensor FOV, and target visual magnitude versus sensor
sensitivity.

B. System State

Because angles-only navigation is known to be characterized by
weak observability [9], proper selection of the state parameterization
is particularly important to maximize accuracy of state estimates and
robustness to errors in a priori information. Specifically, the state
definition should be selected to meet two objectives: 1) separate
weakly and strongly observable terms to enable use of separate

estimation techniques, and 2) maximize accuracy and computational

efficiency of orbit propagation. To meet both of these objectives, the

system state is defined using quasi-nonsingular absolute orbit ele-

ments (OEs) and relative orbital elements (ROEs). The absolute orbit

α is defined as

α � �
a ex ey i Ω u

�⊤
� �

a e cosω e sinω i Ω ω�M
�⊤ (3)

where ex and ey are components of the eccentricity vector. The

relative orbit of each target detected by the onboard sensor, denoted

δα, is described by the quasi-nonsingular ROEs adopted byD’Amico

[27]. Each of these ROEs is function of the OEs of the target and

observer as given by

δα�

0
BBBBBBBBBBBBB@

δa

δλ

δex

δey

δix

δiy

1
CCCCCCCCCCCCCA

�

0
BBBBBBBBBBBBBBB@

δa

δλ

jδej cosϕ
jδej sinϕ
jδij cosθ

jδij sinθ

1
CCCCCCCCCCCCCCCA

�

0
BBBBBBBBBBBBBBB@

�at − ao�∕ao
�ut − uo� � �Ωt −Ωo� cos io

ex;t − ex;o

ey;t − ey;o

it − io

�Ωt −Ωo� sin io

1
CCCCCCCCCCCCCCCA
(4)

where �δex; δey� are components of the relative eccentricity vector

and �δix; δiy� are components of the relative inclination vector.

Section II.C describes the relationships between OEs, ROEs, and

target relative motion in the x̂R − ŷR (radial–tangential) and x̂R −
ẑR (radial–normal) planes.
These state definitions have been previously studied in literature,

resulting in development of accurate analytical dynamics models

(e.g., [28,29]). Also, these states are slowly varying and enable

accurate numerical integration using Gauss’s variational equations

(GVEs) with large time steps for efficient onboard orbit propagation

[30]. More importantly, the weakly observable range to each target is

primarily captured by the δλ term inmost relative motion geometries,

especially for loose satellite formations and swarms. This allows

ARTMS to maximize accuracy by applying separate state estimation

techniques to different state components. Additionally, it has been

shown that the semimajor axis of the observer’s orbit is strongly

observable using bearing angle measurements to a single target [11].

Combined, these properties enable accurate and computationally

efficient estimation algorithms with minimal reliance on a priori

information, as described in Sec. III.
ARTMS also possesses the capacity to estimate auxiliary state

components, such as differential clock offsets and drift rates bet-

ween observers, differential ballistic coefficients, and sensor biases

[14,31–33], and may furthermore operate using fully nonsingular

OEs in equatorial orbits [34]. However, only quasi-nonsingular orbit

estimation will be performed during the initial StarFOX experiment

phase. This is motivated by a desire to reduce computation costs and

system complexity. Furthermore, navigation errors due to mismod-

eled auxiliary states are expected to be minimal during StarFOX:

clocks will be synchronized with GNSS time, the proposed orbit will

result in minimal atmospheric drag, and sensors have been calibrated

before flight. For conciseness, auxiliary state estimation is not dis-

cussed here, but will potentially be explored as part of a StarFOX

extended mission phase.

C. Dynamics Model

ARTMS propagates the absolute orbits of system objects using

fourth-order Runge–Kutta integration of the GVEs. For state α, the
osculating OEs of each spacecraft evolve according to

Fig. 1 Definition of coordinate frames and bearing angle geometrywith
VBS pointing in the −ŷW direction.
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_α � G�α�dR (5)

dR � �
dRx dRy dRz

�⊤ (6)

where G ∈ R6×3 is the GVE matrix [35] and dR is the perturbing

acceleration expressed inR. Depending on the orbit regime, common

perturbations include spherical harmonic gravity terms, atmospheric

drag, third-body gravity, and solar radiation pressure (SRP) [36].

Analytic dynamics models for the mean OEs that include the effects

of J2 gravity are usedwithin ARTMSwhen computational efficiency

is paramount. Specific dynamics models and sources of perturbing

accelerations applied within ARTMS are detailed in Sec. V.
Auseful aspect of theROEs is that theyprovidegeometric intuition

regarding target relativemotion. Before examining these dynamics, it

is beneficial to define curvilinear coordinates which capture the

effects of orbit curvature with improved accuracy. The curvilinear

position vector of a target in the observer’s RTN frame is defined

as δrRcurv � �δr; aoΘ; aoΦ� [37]. Here, δr;Θ;Φ are target–observer

differences in orbit radii, angular in-plane separations, and angular

out-of-plane separations, respectively. The curvilinear representation

can be mapped back to rectilinear coordinates via

δrRrect �

2
664
�ao � δr� cosΘ cosΦ − ao

�ao � δr� sinΘ cosΦ

�ao � δr� sinΦ

3
775 (7)

There exists a subsequent linear mapping between the ROEs and

δrRcurv, first shown for near-circular orbits in [27]. The mapping

was extended to eccentric orbits by defining the eccentric ROEs

δα	 � �δa; δλ	; δe	x ; δe	y ; δix; δiy�, which revert to traditional,

quasi-nonsingular ROEs for eo ≈ 0 [38]. The resulting mapping is

δrR ≈ ro

2
66664
δa − eo

2
δe	x − δe	

	
cos

�
fo − ϕ	�� eo

2
cos

�
2fo − ϕ	�


δλ	 � δe	
	
2 sin

�
fo − ϕ	�� eo

2
sin

�
2fo − ϕ	�


δi sin�fo � ωo − θ�

3
77775
(8)

Figure 2 presents relative motion in RTN for this mapping for small

target separations. Components of oscillatory motion produced by

the target’s separation and relative orbit are shown in black, possess-

ing the same frequency as the orbit. Components of oscillatory

motion produced by orbit eccentricity are shown in red, acting at

twice the frequency of the orbit. Note that δa and δλ	 capture mean

offsets in the radial and along-track directions respectively; magni-

tudes of δe	 and δi correspond to magnitudes of oscillations in the

RT and RN planes, respectively; and phases of δe	 and δi dictate
the orientation and aspect ratio of the tilted ellipse in the RN plane.

The eccentricity of the observer’s orbit superimposes additional off-
sets and higher-frequency oscillations in the RT and RN planes.

III. ARTMS Architecture

A. Overview

To simplify subsequent discussions, the following terminologies
are adopted. The “observer” refers to the spacecraft hosting the
instance of ARTMS being discussed. A “remote observer” is another
spacecraft hosting ARTMS providing measurements over the ISL.
The “local subsystem” includes an observer and all its “targets,”
which are the resident space objects (RSOs) detected by the onboard
VBS. The “system” (or DSS) refers to the entire distributed space
system, consisting of all involved observers and targets. Targets may
be non-cooperative objects or spacecraft that do not actively assist
navigation, or may be cooperative remote observers themselves.
Figure 3 presents a notional illustration of a four-spacecraft DSS
using ARTMS.
A high-level overview of ARTMS as implemented in StarFOX

flight software is shown in Fig. 4. ARTMS is divided into three
main modules: image processing (IMP), batch orbit determination
(BOD), and sequential orbit determination (SOD). It interfaces with
the onboardVBS, the ISL, the ground segment, and an onboardGNSS
receiver (if available). The VBS provides time-tagged raw images,
which are processed to obtain inertial bearing angles to target RSOs.
The ISL communicates orbit estimates and angles measurements bet-
ween observers in the DSS, which allows ARTMS to perform distrib-
uted multi-observer navigation. The ground segment provides
telecommands, maneuver plans, and orbit estimates to each observer
in the DSS. This information is used by all ARTMS modules. Sim-
ilarly, the ground segment receives telemetry from all modules. If the
spacecraft is equipped with a GNSS receiver, it provides position/
velocity/time (PVT) navigation solutions to allmodules, to replace less
timely orbit estimates from the ground. These absolute orbit estimates
are necessary for each observer to initialize navigation.
The IMP module uses a coarse estimate of the observer’s absolute

orbit and VBS images to produce batches of bearing angle measure-
ments and corresponding uncertainties to all visible targets without
any a priori relative orbit knowledge. Relative orbit information from

Fig. 2 Components of target relative motion in the x̂R − ŷR (RT) and x̂R − ẑR (RN) planes [14].

Fig. 3 Notional illustration of ARTMS observers and targets for a four-
spacecraft system (not to scale).
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SOD can be leveraged when available to reduce computation cost.
IMP measurement batches are provided to the BOD and SOD mod-

ules. Additionally, IMP sends the orbit estimate and bearing angles to
the ISL for transmission.
TheBODmodule uses the coarse estimate of the observer’s absolute

orbit and the batches of bearing angles provided by IMP to compute

orbit estimates for all spacecraft in the local system (including itself and
all targets observed by onboard cameras). This DSS state estimate is
provided to SOD for initialization and fault detection.
The SOD module uses the state estimate from BOD to initialize a

navigation filter that continuously estimates the orbits of all space-

craft in the local system as well as auxiliary parameters (e.g., ballistic
coefficients or differential clock offsets). SOD seamlessly fuses
measurements from IMP and from remote observers communicated

over the ISL. SOD state estimates are provided to the ground and also
to IMP to reduce the computation cost of tracking detected targets.
ARTMS navigation is primarily autonomous in that minimal a

priori information is required and no external measurement sources

are needed. The ISL enables cooperative navigation, and the system
is distributed in the sense that each observer only navigates for its
local subsystem, which may be a subset of the complete DSS.

B. Assumptions and Limitations

The version of ARTMS to be flown during StarFOX removes
many key limitations of prior angles-only flight experiments and is
a significant advance over existing fully integrated architectures.

Nevertheless,ARTMSstill requires three key assumptions to operate.
First, during StarFOX experiments featuring cooperative space-

craft, it is assumed that the ground provides a unique identification
number (ID) and a priori orbit estimate for each DSS member. Each

observer can then utilize its a priori orbit estimate to initialize navi-
gation (butmay not have access to the a priori orbits estimates of other
DSS members). Moreover, it is assumed that maneuvers performed

by the swarm are cooperative, such that the ID number, execution
time, burn time, magnitude, and direction of every swarm maneuver
are provided to ARTMS. Future work will explore detection and

classification of unknown target maneuvers via uncertainty-aware
filtering and outlier detection techniques.
Second, StarFOX formations have been specifically designed to

ensure that targets remain consistently in the FOV of the observer.

This may not be true for more general DSS geometries. If a priori
target state information is available, it is assumed that observers have
the ability to align their VBSs to track target orbits of interest. If a

priori state information is unavailable, it is assumed that targets cross
the FOV with sufficient regularity to at minimum initialize tracking.
As detailed in Sec. III.C, this implies a minimum of four target

sightings in successive images. Future work will investigate the

optimization of observer attitudes to ensure that target measurements
are obtained consistently, as well as the usage of wide-FOV cameras
and variable measurement frequencies for detection of fast-moving
targets across larger areas.
Third, the current structure of ARTMS possesses limited scalability

to very large numbers of tracked RSOs. Distribution and decentrali-
zation arise from hardware limitations, in that different observers may
only be able to obtain measurements of specific subsets of targets due
to limitations on VBS FOV, detectable visual magnitude, and radio
range. However, each ARTMS observer automatically attempts to

track all locally detected RSOs and broadcasts its measurements to
all remote observers. Benefits of this approach include its simplicity
and redundancy for flight experiments because it ensures that the
maximumnumber ofmeasurements is available if one ormore observ-
ers fail. Conversely, if there areNt targets in the FOVwhereNt is large,
orNo communicating observerswhereNo is large, onboardnavigation
may become computationally intractable. This is especially important
for the IMP module, which applies multihypothesis tracking compu-
tations that scale quickly with Nt. Future versions of ARTMS will
explore more intelligent methods of decentralized computation, such
that observers can autonomously divide navigation and tracking tasks

between active ARTMS instances in a more optimal fashion.

C. Image Processing

The objective of the IMP module is to produce batches of time-
tagged bearing angle measurements to each target using a coarse
estimate of the observer’s orbit and images provided by the onboard
VBS.This is accomplished in two phases. First, each incoming image
is processed and reduced to a set of inertial bearing angles that may
correspond to RSOs. Second, these candidate bearing angles are used

to track known targets and detect new targets using an approach
inspired by multihypothesis tracking (MHT) [19]. Figure 5 presents
an example image input with visible point sources. Typical sample
rates for the VBS are 1–2 minutes in LEO.
The first phase of IMP uses a set of algorithms developed pre-

viously in literature. First, a Gaussian grid centroiding algorithm [39]
is used to simplify the raw image into a list of pixel cluster centroids.
Second, these centroids are converted to unit vectors in the VBS
frame using a calibrated VBS model. Next, the pyramid star identi-
fication algorithm [40] is applied to remove stellar objects (SOs) from
the list of pointing vectors. The pointing vectors to identified stars in
the inertial and VBS frames are used to compute the VBS attitude
using the q-method [41]. The inertial unit vectors to targets typically
vary quickly in time due to orbital motion. Thus, objects with inertial
unit vectors that remain similar between images are considered to be

uncatalogued SOs and removed. A similarity threshold of 20 0 0 allows
for the effects of nominal bearing angle errors. Similarly, objects with

Fig. 4 A high-level overview of the ARTMS flight architecture.
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unit vectors in V that remain similar between images are considered

to be camera hotspots and removed. A similarity threshold of 5 0 0
prevents mis-identifying targets with near-zero relative motion. The

remaining minimalistic set of inertial unit vectors corresponds to
known targets or other unknown objects in the FOV.
In the second phase, these measurements must be assigned to

currently tracked targets or used to initialize tracks for unidentified

targets. To accomplish this, IMP employs the Spacecraft Angles-Only

Multitarget Tracking System (SAMUS) algorithm [21]. SAMUS is
agnostic to orbit eccentricity and requires only 1) coarse absolute orbit

knowledge of the observer and 2) knowledge of the magnitudes and

execution times of swarm maneuvers (but not which maneuvers cor-

respond to which targets). No knowledge of the number of targets or
their relative orbits is needed. SAMUS is designed to meet the con-

straints of risk-averse angles-only navigation in space, i.e., to achieve

close to 100% measurement assignment precision with low measure-

ment frequencies and limited computational resources. It applies the

core concept of MHT in that as measurements arrive, several simulta-
neous hypotheses are maintained as to how they can be associated into

target tracks. The correct hypothesis is converged to over time asmore

information is received.
Apart from MHT, several other families of multitarget tracking

algorithms were considered for SAMUS, including GNN, JPDA,
RFS, and ML approaches. Each has advantages and disadvant-

ages. Briefly, GNN is computationally simple but susceptible to

poor performance when targets are not well-separated [42]. JPDA,

though demonstrably accurate in many scenarios, generally assumes
a known number of targets [43]. Both are then nonideal in that targets

may not be well-separated, and the number of visible targets may

be unknown. RFS techniques are more recent, with many promising

varieties under development; conversely, they are somewhat less

proven and approximations are needed for real-time usage [19]. ML
approaches for data association have also become increasingly popu-

lar, but there are difficulties ingenerating training data representative of

the space environment [44]. In contrast,MHTis amature, theoretically

optimal approach that performswell for low signal-to-noise ratios [42].

Its primary disadvantage is that the number of hypothesis may grow
very quickly, resulting in a need to frequently and heuristically trim

unlikely hypotheses to achieve real-time computation (particularly
problematic for low-powered spacecraft processors).
In comparison to naive MHT, SAMUS achieves vastly improved

efficiency by leveraging domain-specific knowledge to develop new
hypothesis management criteria. Figure 6 presents an overview of
core SAMUS operations, where dashed outlines denote steps that
only occur at relevant epochs. Its output is a set of target tracks, which
each consist of bearing angles measured by the local observer,
separated in time.
The first operation is to detect and initialize possible new target

tracks by applying the Density-Based Spatial Clustering of Applica-
tions with Noise (DBSCAN) algorithm to unidentified points in the
most recent four images [45]. During StarFOX and similar swarm
scenarios, target velocities are low compared to other objects in the
FOV, because targets are in similar absolute orbits to observers. Thus,
target measurements form clusters in V. A new SAMUS target is
initialized if DBSCAN detects a cluster of at least four unidentified
bearing angles within some small radius ϵD.
Subsequent operations apply Eq. (8), whichmaps OEs andROEs to

target relative positions in R. On the right-hand side of Eq. (8), true
anomaly fo is the only quickly varying term, whereas other terms vary
on longer timescales in the presence of perturbations such asJ2 inLEO
[27]. The “measurement transform” step in Fig. 6 recalls that system
members in formation-flying scenarios remain in close proximity in
inertial space, such that each is affected similarly by perturbations. By
synchronously differencing the bearing angles of different targets—in
essence, using one track as a virtual, moving origin for another—
perturbation effects are approximately canceled between targets,
recovering motion as per Eq. (8). Target motion is then parametric in
fo with a known periodic form. Even if specific ROEs are unknown,
this model can be leveraged to assess bearing angle tracks.
The measurement prediction operation rearranges the radial and

normal components of Eq. (8) so that a track motion model may be
fitted to its measurements, as per

�
ϵ
α

�
R
≈
ro
ao

"
x1 − x2

�
cos�fo − x3� � eo

2
cos�2fo − x3�

�
x4 � x5 sin�fo � ω − x6�

#
(9)

where x1; : : : ;6 are scaledROE equivalents in bearing angle space [21].
Terms ro; ao; fo; eo;ωo are computed from the observer orbit esti-
mate. If a track consists of at least three bearing angles at different
times, the six unknowns x1; : : : ;6 can be solved for via least squares.

Measurements in future epochs can then be predicted by propagating
the observer orbit estimate and applying the fitted model, and good-
ness of fit can be assessed via fitting residuals.
In the “track propagation” step, SAMUS applies a set of kinematic

rules (derived from the parametric motion model) to assess which
tracks are physically reasonable. Figure 7 presents relevant track
quantities in the two-dimensional bearing angle plane. Vectors vk
connect successive bearing angles, where the subscript k refers to the
current tracking epoch. Each vk has magnitude dk, phase ζk, and
intervector angle ψk. Briefly, the rules are summarized as follows:
1) Target track velocities in the two-dimensional bearing angle

planemust be below a user-specifiedmaximum, as derived fromorbit
dynamics, the image measurement frequency, and constraints on the
allowed magnitude of target relative motion, such that dk < dk;max.
2) Target track velocitiesmust be consistent over time such that the

ratio of track velocities between successive images is close to one, as
per jdk∕dk−1j ≈ 1.

Fig. 6 SAMUS algorithm summary and core sequence of operations.
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Fig. 5 Example input image with point sources detected and identified
by IMP.
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3) Tracks should generally not feature acute angles, such that
ψk ≈ π.
4) Tracks should turn in a consistent direction such that they

follow an approximately elliptical path that does not change sig-
nificantly on the timescale of image-to-image tracking, such that
sign�ζk − ζk−1� � sign�ζk−1 − ζk−2�.
5) New track measurements must be close to the measurement

predicted by the fitted motion model within some user-specified
tolerance, as per k�α; ϵ�k − �αp; ϵp�kk2 < dp;max.

Tracks that do not pass all rules are considered unlikely and are

removed, which increases the efficiency of MHT. When multi-

ple tracks pass all rules, SAMUS scores propagated tracks via a set

of criteria that assess how well each fulfills the expectations of

Eq. (8) and their prior motion [21]. These criteria include the

following:
1) The size of summed residuals from track fitting
2) The difference between the newest predicted and assigned

measurements, i.e., k�α; ϵ�k − �αp; ϵp�kk2
3) The closeness of dk to its predicted value and mean values, i.e.,

jdk − dpj and jdk − dmeanj
4) The closeness of ψk to its predicted value and mean values, i.e.,

jψk − ψpj and jψk − ψmeanj
5) The preference for tracks to possess lower velocities and more

gradual turns, i.e., jdkj and 1∕jψkj
Lower scores are preferred. In contrast to traditional MHT meth-

ods that often rely on a single statistical metric for scoring, SAMUS

aims to be more robust. Often, target tracks intersect or are in close

proximity in the image plane, or motion between images is on the

order of VBS noise. A single scoring metric is therefore not robust,

but consensus from a larger set ofmetrics is able to support the correct

choice over time. Additionally, scoring does not require probabilistic

estimates of false alarm densities or target decay rates, which are not

easily obtainable for spacecraft.

Surviving hypotheses are then managed and pruned according to

traditional MHT methods [46]. If maneuvers are expected during

tracking, they are matched to targets by examining the qualitative

change in their fitted x1;: : : ;6 values pre- and postmaneuver, and

comparing this to expected qualitative changes in ROEs from a state

transition matrix. Finally, tracks must also be re-initialized in the

event of on-orbit measurement interruptions such as eclipse periods.

To connect shorter tracks on either side of an interruption, the linear

system fit of Eq. (9) is computed for every track pair. The combina-

tion of compatible pairs that produces the least fitting residuals is

chosen as output.

In scenarios where a priori relative state estimates are available

from SOD, the process is simplified. Track measurement predictions

and an associated uncertainty region are provided via an unscented

transform from the ROE state to bearing angles. The uncertainty

region is applied for track gating, and the Mahalanobis distance bet-

ween predicted and assigned measurements is employed for track

scoring. Note that the linearizations present in Eq. (8) imply that

SAMUS is currently most appropriate for interspacecraft separations

up to several hundred kilometers—as encountered during StarFOX

and swarm scenarios—and not necessarily constellation at very large

separations. Improved motion models such as those in [17] will be

leveraged to explore the constellation case.

D. Batch Orbit Determination

The BOD module must produce orbit estimates for visible targets
with sufficient accuracy to initialize the SOD module using only a
coarse estimate of the observer’s orbit and batches of bearing angles
to each target from IMP. State estimation is accomplished using a
spaceborne algorithm [11] inspired by thework ofArdaens andGaias
[16], which sequentially estimates the six ROEs of each target while
simultaneously refining the estimate of the observer’s semimajor
axis, using batches of bearing angle measurements. Typical meas-
urement collection periods are 1–2 orbits for a total batch of Ny ∈
�50;200� measurements per target. The batch estimation problem is
somewhat ill-conditioned due to the weak angles-only observability
of δλ. As a result, δλ is estimated using a line sampling procedure,
whereas the other strongly observable ROEs are estimated using
iterative batch least squares. Note that, currently, BOD only utilizes
measurements from the onboard camera; although more geometric
information and improved δλ observability would be gained by
extending the method to multiple observers, additional challenges
are faced in regard to algorithmic complexity, communications
bandwidth, and computational requirements. Multi-observer BOD
capabilities are therefore proposed for a StarFOX extended mission,
and the following algorithm focuses on single-observer BOD.
Consider a model yI �x�test�; t� that provides bearing angles

at time t as a function of system state x�test� at estimation epoch
test. It is useful to partition x into components estimated and

components provided a priori, with x � �x⊤est; x⊤prior�⊤. For Nx esti-

mated state components, xest ∈ RNx , where StarFOX applies xest �
�δa; δλ; δex; δey; δix; δiy; ao� ∈ R7.

The BOD module operates on batches of bearing angles provided
for Ny epochs t1; : : : ; tNy

, collectively denoted t. A measurement

batch z�x; test; t� ∈ R2Ny is

z�x�test�; t� �

0
BBB@

yI �x�test�; t1�
..
.

yI �x�test�; tNy
�

1
CCCA (10)

Sensitivity matrices containing the partial derivatives of measure-
ments with respect to state components are

Sest�x�test�; t� �
∂z�x�test�; t�

∂xest

����
x�test�

Sprior�x�test�; t� �
∂z�x�test�; t�

∂xprior

����
x�test�

(11)

with Sest ∈ R2Ny×Nx .
For each target, the estimation process applies the following

procedure. First, the user selects a set of samples of δλ. The δλ state
space may be bounded by the expected minimum target separation
and the maximum target range physically observable by the VBS.
The sampling interval may be selected with reference to onboard
computational resources or the desired δλ output accuracy. StarFOX
divides the expected state space for δλ into 100–300 intervals in the
positive and negative directions with sampling intervals of 1–2 km.

Fig. 7 Target track quantities in the two-dimensional bearing angle plane.
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For each δλ sample, xest is initialized is follows. For the first

sample, all ROEs except δλ are set to zero, and a is set to the value

from the observer’s absolute orbit estimate. For subsequent samples,

ROEs are initialized as

δα� � δα− δλ
�

δλ−
a� � a− (12)

where superscripts “�”and “−”refer to the prior and current sample,

respectively. This saves computation effort because the direction of

converged ROE solutions does not change significantly between
adjacent δλ samples.
At each iteration, a modeled batch of bearing angle measurements

zmodel ∈ R2Ny is computed by propagating the estimated state vector

xest to each measurement epoch. The difference between measured
and modeled angles is then

Δz � zmeas − zmodel�x�test�; t� (13)

where zmeas ∈ R2Ny is the batch of true measurements from IMP.

Subsequently, the state estimate update

Δz � Sest�x�test�; t�Δxest (14)

xest ← xest � Δxest (15)

can be performed, where Sest�x�test�; t� is computed via linearization

of the bearing angle measurement model and the unknown Δxest is
solved for via least squares. State refinement continues until a user-

specified iteration limit is reached or Δxest is smaller than a user-

specified convergence threshold.
After refinement has been completed for each δλ sample, the final

state estimate xf is selected as the converged sample, which produced

the smallest measurement residual vector Δz. This leads to an opti-

mization objective of

min
xest

Δz⊤Δz (16)

for which xest � xf is the optimal solution. Figure 8 is a notional

illustration of the norms of the converged measurement residual

vectors for each candidate value of δλ in a single test case of the

BOD algorithm. The norm of the measurement residual vector is

normally a convex function of range, despite its weak observabil-

ity [16].
It is then necessary to estimate the associated initial state uncer-

tainty. The equation applied is [11]

Rest � SestPestS
⊤
est (17)

whichmapsmeasurement covariancematrixRest ∈ R2Ny×2Ny to state

covariance matrix Pest ∈ RNx×Nx via the sensitivity matrix Sest. To
account for all relevant uncertainties, the measurement covariance
can be further divided as

Rest � Rsens � Rprior � Rdyn

�

2
666664

Rmeas 0 : : : 0

0 Rmeas : : : 0

..

. ..
. . .

. ..
.

0 0 : : : Rmeas

3
777775� Sprior�xf�PpriorSprior�xf�

�

2
6666664

Rproc 0 : : : 0

0 Rproc : : : 0

..

. ..
. . .

. ..
.

0 0 : : : Rproc

3
7777775

(18)

The Rsens term encompasses uncertainties due to sensor noise; the
Rprior term encompasses uncertainties stemming from a priori infor-

mation; and the Rdyn term encompasses uncertainties due to system-

atic discrepancies between the onboard and ground truth dynamics
models. Each term can be computed. The sensor noise associated

with individual measurements, Rmeas ∈ R2×2, is estimated via

Rmeas �
1

Ny

XN
j�1

�
zmeas

�
tj
�

− yI
�
xf; test; tj

���
zmeas

�
tj
�
− yI

�
xf; test; tj

��⊤ (19)

This estimation of sensor noise using the postfit measurement resid-
uals allows operation even when an accurate a priori model of sensor
noise is unavailable. The uncertainty of a priori state information,
Pprior, is assumed to be provided. The measurement uncertainty due

to process noise, Rproc ∈ R2×2, can be estimated by propagating the

time-varying orbit covariance due to unmodeled RTN accelerations
to eachmeasurement epoch, then applying an unscented transform to
convert the orbit covariance to a bearing angle covariance, following
the process in [33]. In this fashion, time-varying uncertainties due
to propagation times from each measurement epoch to the BOD
estimation epoch are accounted for. However, instead of computing
Rdyn, StarFOXapplies the empirical approximationRest�NyRsens�
Rprior [11]. It has been found in practice that this factor ofNy leads to

sufficient consistency between BOD estimation errors and uncer-
tainties without requiring additional computation. The initial state
uncertainty can then be estimated from known terms via Pest �
S	
estRestS

	⊤
est , where * denotes a pseudo-inverse. This formulation

allows the BOD module to seamlessly transition between domains
where uncertainty is driven by different sources.
Overall, the BOD sampling approach is enabled by application of a

fully analytical dynamics model (including the J2 perturbation for
LEO [28]), which minimizes the computation cost of orbit propaga-
tion. Similar analytic models can be employed in other orbit regimes
[31,32]. Computation cost of the algorithm increases linearlywith the
number of targets in the subsystem and linearly with the number of δλ
samples, allowing efficient scaling.
The necessity of δλ sampling is also informed by a StarFOX

observability analysis, in that δλ tends to be most weakly observable
in swarms and formation-flying scenarios [11,14]. This is not nec-
essarily the case for more general configurations; in constellation
scenarios with stronger observability, it may instead be possible to
solve for δλ directly using a similar least-squares approach. However,
a limitation of theBOD algorithm is that it requires an initial guess for
the system state that will converge using linearized state updates.
Convergence may therefore be challenging if interspacecraft separa-
tions are on the order of the orbit radius, or if errors in the
a priori absolute orbit estimate are greater than several kilometers.
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Fig. 8 Behavior of converged measurement residuals for different δλ
samples in the BOD module.
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In future, observability-aware and graph-oriented approaches will be

leveraged to examine constellation cases at far separations.

E. Sequential Orbit Determination

The SOD module continually refines estimates of the orbits of

all spacecraft in the subsystem as well as auxiliary parameters (e.g.,
sensor biases, ballistic coefficients, and differential clock offsets) by
seamlessly fusing measurements from all observers transmitted over

the ISL. The SODmodule is based on an adaptive, efficient unscented
Kalman filter (UKF) [10,14], which applies the bearing angle meas-

urement model and numerical GVE dynamics model from Sec. II. As
opposed to an extended Kalman filter, the UKF is able to incorporate

fully nonlinear dynamics and measurement models and preserves
second-order moments in the probability distribution. The resulting

improvements in observability are critical for enabling maneuver-
free state convergence using angles-only measurements from a sin-

gle observer [14]. Three additional features are included in SOD to
maximize performance. First, adaptive process noise estimation is
used to improve convergence speed and robustness to errors in the

dynamics model [10]. Second, the state definition is organized in a
way that exploits the structure of the Cholesky factorization to reduce

the number of calls to the orbit propagator by almost a factor of two
[47]. Third, a measurement assignment procedure is used to deter-

mine whether any received measurements from remote observers are
in fact measurements of targets being tracked by the local ARTMS

instance. This enables multi-observer UKFmeasurement updates for
observability and navigation performance improvements. The meas-

urement assignment procedure is outlined as follows.
SOD first attempts to determinewhether any of the remote observ-

ers ARTMS is communicating with correspond to targets being
tracked by the onboard ARTMS instance. Let remote observer m
have inertial Cartesian state xIm with associated covariance PI

m

(as computed from its broadcast absolute orbit estimate). Let local

targetn have inertial Cartesian statexIn with associated covarianceP
I
n

(as computed from onboard orbit estimates). The Mahalanobis dis-

tance σmn [42] between the state estimates is computed as

σmn �
�������������������������������������������������������������������������
xIm − xIn

�⊤�PI
m � PI

n

�−1�xIm − xIn
�q

(20)

Remote observerm is identified as local target n if four conditions are
fulfilled, as per user-defined thresholds:
1) m has not yet been identified;
2) σmn ≤ σassign, i.e., the remote observer state is similar to the local

target state;
3) σpn ≥ σsafe ∀ p ≠ m, i.e., there is no other remote observer state

similar to the local target state; and
4) σmq ≥ σsafe ∀ q ≠ n, i.e., there is no other local target state

similar to the remote observer state.
Identifications are removed if σmn ≥ σremove, with σremove >

σsafe > σassign > 0. These conditions ensure that targets are formally

identified and that measurements broadcast by remote observer m
will not be considered measurements of m itself, when they are

received by the onboard ARTMS instance (to within a statistical
certainty determined by σ values). Preventing this contradiction

improves robustness and reduces the search space when assigning
measurements.
SOD then attempts to determinewhether any of the measurements

received from remote observers correspond to RSOs being tracked

by the onboard ARTMS instance. Let yVm
meas;i be bearing angle i

received from a remote observer m in its VBS frame. Let yVm

model;j

be the modeled bearing angle of locally tracked RSO j, as would be
seen bym in its VBS frame. RSO jmay be a local target, or the local

observer itself. In practice, computing yVm

model;j requires an orbit

estimate for m (either broadcast by m, or from the local ARTMS
instance if m was matched to a local target); an orbit estimate for j,
from the local ARTMS instance; and the rotation from I to the VBS
frame ofm, as broadcast bym. Corresponding bearing angle covari-

ance PVm

model;j is also computed via an unscented transform of the

associated state covariances. The Mahalanobis distance σij [42]

between the measured and modeled angles is then

σij �
�������������������������������������������������������������������������������������������������������	
yVm
meas;i − yVm

model;j


⊤	
PVm

model;j


−1	
yVm
meas;i − yVm

model;j


r
(21)

Tominimize erroneous assignments, measurement i from the remote

observer is assigned to locally tracked RSO j if three conditions are
satisfied, as per user-defined thresholds:
1) σij ≤ σmatch, i.e., the remote measurement is close to the mod-

eled measurement;
2) σkj ≥ σambig ∀ k ≠ i, i.e., there is no other remote measurement

that matches the local modeled measurement; and
3) σil ≥ σambig ∀ l ≠ j, i.e., there is no other local modeled meas-

urement that matches the remote measurement.
Figure 9 includes conceptual illustrations of four cases of modeled

and observedmeasurements from a remote observer, which (from left

to right) show all conditions satisfied and violations of conditions 1,

2, and 3, respectively. Together, these conditions ensure that mea-

surements are only assigned when observed and modeled measure-

ments uniquely agree with a statistical certainty determined by the

values of σ, with σambig > σmatch > 0. Threshold values should be

selected based on the expected number of targets, relative motion

geometry, sensor noise, and available orbit knowledge for general

swarming missions. For scenarios similar to StarFOX, the authors

have found that σassign � 3; σsafe � 6; σremove � 10; σmatch � 3, and

σambig � 6 provide robust assignment.

Similar identity checks are also needed to allow observers to

perform filter maneuver updates. ID numbers are assigned to locally

tracked objects by matching ground-provided orbit estimates to

onboard orbit estimates using Mahalanobis distance thresholds.

The SOD module may then use the ID numbers of provided maneu-

vers to perform maneuver updates for the local subsystem. Future

work will investigate uncertainty-aware and multihypothesis meth-

ods for tracking non-cooperative targets performing potentially

unknown maneuvers.
Finally, to aid robustness and error recovery, the SOD module

performs autonomous health checks for the current state estimate

after each filter update and attempts to automatically re-initialize if

necessary. Re-initialization is performed if any of the following

conditions are fulfilled:
1) The Mahalanobis distance between the most recent BOD rela-

tive state estimate and current SOD relative state estimate is above a
user-specified threshold σdiv. The threshold is chosen based on
expected in-orbit performance and the allowed divergence between
each estimate; StarFOX applies 10 < σdiv < 100. The BOD and SOD
estimates are only compared if the time interval between them is
sufficiently small (e.g., less than 60 minutes). This ensures consis-
tency of BOD and SOD outputs.
2) The number of successive filter update steps that did not feature

a measurement update is above a user-specified threshold. StarFOX
applies a limit of 100 measurements, or approximately 1 orbit of
measurements inLEO for aVBS sample rate of 60 s. This ensures that
ARTMS has not lost sight of its targets.

Fig. 9 Conditions in which all measurement assignment criteria are
satisfied (leftmost) and conditions that violate each criteria (right).
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3) The number of successive filter measurement update steps that
featured a large prefit measurement residual is above a user-specified
threshold. StarFOX applies a limit of 20measurements to allow some
time for recovery. This ensures that ARTMS has not encountered
tracking errors such that its state estimates are no longer reliable.
4) The SOD state estimate is outside a user-specified valid range.

StarFOX applies limits based on its planned orbit geometry, with
6500 km < a < 7500 km;e < 0.02; jδaj < 20 km; jδλj < 500 km; jδej
< 20 km;and jδij < 20 km. This ensures the state estimate remains
physically reasonable.
To re-initialize, the SOD module may either use ground-provided

orbit estimates or the most recent BOD state estimate.

IV. StarFOX Experiment

A. Experiment Objective

The core objective of StarFOX is to demonstrate multi-observer
multitarget angles-only navigation in orbit in a more flexible, robust,
and autonomous fashion, building upon the contributions of prior
single-observer–single-target flight experiments such as ARGON
[22] and AVANTI [23]. These prior experiments were affected by
four key limitations: 1) reliance on accurate a priori orbit information
to initialize relative navigation for target objects (e.g., use ofNORAD
two-line elements), 2) reliance on access to external absolute orbit
measurements tomaintain state convergence for the observer (e.g., use
of a GNSS receiver), 3) reliance on frequent translational maneuvers
to improve angles-only range observability, and 4) inclusion of only
one observer and one target spacecraft. These limitations prevent the
usage of angles-only navigation inmany scenarios of interest. Specifi-
cally, reliance on accurate a priori information and/or external orbit
measurements precludes angles-only navigation in orbit regimes
where accurate reference metrologies are impractical to access. Reli-
ance on maneuvers introduces complex coupling between navigation
and control systems and reduces mission lifetimes. Additionally, most
DSS scenarios propose tracking of multiple targets simultaneously
and/or cooperation between multiple observers. In response, StarFOX
aims to explicitly demonstrate the removal of each limitation, allowing
a swarm of spacecraft to perform both absolute and relative navigation
using only bearing angles with minimal a priori information. This
degree of generality and autonomy enables use of angles-only navi-
gation for a wide range of missions [31,32,34] and advances the
readiness level of angles-only technology.

B. Starling Mission

StarFOX is a core payload of the NASA Starling swarm mission,
which consists of four 6U CubeSats. Each CubeSat carries two Blue
Canyon Technologies Nano Star Trackers aligned in antiparallel
directions, either of which may act as the VBS for ARTMS; a GNSS
receiver; an S-band radio, which acts as the ISL for ARTMS; and a
cold gas propulsion system, used to conduct swarm maneuvers.

Figure 10 presents an image of the four Starling spacecraft during
integration at the NASA Ames Research Center. The spacecraft are
denoted SN1, SN2, SN3, and SN4.
Starling will be launched into sun-synchronous low Earth orbit,

and nominal OEs of SN1 are presented in Table 1. The swarm is first
deployed in an in-train (IT) or string of pearls formation mainly
separated in the along-track direction with very little relative motion
between spacecraft [48]. This case is the simplest operationally but is
the most challenging in terms of angles-only state observability.
Subsequently, the swarm will be reconfigured into two E/I-vector
separated or passive safety ellipse (PSE) formations with more
relative motion between spacecraft [49]. PSE formations introduce
passive safety by ensuring that all spacecraft are separated in the
plane perpendicular to the flight direction, and furthermore possess
improved observability. Nominal ROEs are presented in Table 1.
ARTMS performance will therefore be evaluated for three different
geometric configurations, as well as during formation reconfigura-
tions when spacecraft are maneuvering.
Figure 11 presents the relative orbits of SN2, 3, and 4 in the RTN

frame of SN1 for each formation. Curvilinear coordinates are used
(as defined in Sec. II.C) to more clearly illustrate the passive safety
ellipses.

C. Experiment Schedule

StarFOX is divided into 14multiday blocks, each of which verifies
a distinct formof angles-only navigation. Table 2 presents a summary

Fig. 10 The four Starling CubeSats during integration. Image courtesy of NASA/Dominic Hart (2022).

Table 1 Nominal OEs and ROEs for the Starling swarm

Absolute orbit

Spacecraft a, km e i; ° Ω; ° ω; ° M; °

SN1 6,934 0.0020 97.5 224.8 52.3 124.9

Relative orbits (IT)

Spacecraft aδa, m aδλ, m aδex, m aδey, m aδix, m aδiy, m

SN2 0 65,750 0 100 0 100
SN3 0 131,500 0 100 0 100
SN4 0 197,250 0 100 0 100

Relative orbits (PSE1)

Spacecraft aδa, m aδλ, m aδex, m aδey, m aδix, m aδiy, m

SN2 0 65,750 0 −500 0 −500
SN3 0 131,500 0 −15,00 0 −1,500
SN4 0 197,250 0 −2,000 0 −2,000

Relative orbits (PSE2)

Spacecraft aδa, m aδλ, m aδex, m aδey, m aδix, m aδiy, m

SN2 0 65,750 0 500 0 500
SN3 0 131,500 0 −1,500 0 −1,500
SN4 0 197,250 0 −1,000 0 −1,000
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of experiments planned for the initial six-month Starling mission.

In the table, experiment A/B1/B2 denotes three experiments that

occur simultaneously, performing navigation for 1/2/3 target space-

craft in view. The “attitude” column describes the attitude of SN1/2/

3/4, referring to whether its active VBS has its boresight aligned

with the flight direction (�) or antiflight direction (−). The “local
targets” columns list which targets are tracked by SN1/2/3/4 (left to

right). The “remote observers” columns list which observers SN1/

2/3/4 exchanges measurements with. Remaining columns describe

whether the ISL is active; whether GNSS measurements are avail-

able; whether the swarm is expected to maneuver during the experi-

ment block; and whether an autonomous initialization from BOD

is used.

Experiment blocks A/B and C/D examine single-observer–

multitarget navigation in an in-train formation. GNSS measure-

ments are necessary to maintain absolute orbit convergence, and an

autonomous initialization is not used due to the weaker observ-

ability of the formation, which is expected to result in large BOD

state uncertainties. Blocks E/F and G/H introduce multi-observer

navigation through the ISL, which is expected to improve target

range observability. Blocks I/J, K/L, and M/N move to a PSE for-

mation with increased observability and also begin testing the autono-

mous BOD initialization. Blocks O/P, Q/R, and S/T display increasing

autonomy by using multi-observer measurements to maintain obser-

ver absolute orbit estimates without GNSS, emulating a deep space

scenario. Finally, blocks W, X, and Y introduce complete distributed

navigation with four cooperative observers, expected to produce the

best state estimation performance as well as the highest onboard

computation cost. Experiment complexity therefore increases through-

out the schedule. Furthermore, scheduling of multiple simultaneous

experiments allows performance comparisons of alternate ARTMS

modes, such as different filter dynamics models, process noise han-

dling, or measurement sample rates. Some experiment blocks include

maneuvers that are known to improve angles-only observability by

disambiguating target range [9]. However, maneuvers are also expec-

ted to make IMP target tracking more challenging if SOD has not yet

initialized, since IMPmustmatchmaneuvers to target tracks usingvery

limited state information.

Each experiment commences with the preparation of tables and

commands to be uplinked to each spacecraft. Tables contain ARTMS
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Fig. 11 Relative orbits with respect to SN1 for the IT (left), PSE1 (center), and PSE2 (right) formations.

Table 2 StarFOX experiment block configurations

Experiment
Duration,
days Formation Attitude

Local targets Remote observers ISL
active

GNSS
usage

Maneuv.
present

Auto.
init.SN1 SN2 SN3 SN4 SN1 SN2 SN3 SN4

A/B1/B2 2 Reconfig. +/+/+/− 234 34 4 123 —— —— —— —— No Yes Yes No
C/D1/D2 2 In-train +/+/+/− 234 34 4 123 —— —— —— —— No Yes No No
E/F1/F2 3 In-train +/−/−/− 234 1 12 123 4 3 4 1 Yes Yes No No
G/H1/H2 2 In-train +/−/−/− 234 1 12 123 4 3 4 1 Yes No Yes No

I/J1/J2 2 Reconfig. +/+/+/− 234 34 4 123 —— —— —— —— No Yes Yes No
K/L1/L2 2 PSE 1 +/+/+/− 234 34 4 123 4 3 4 1 No Yes No Yes
M/N1/N2 3 PSE 1 +/−/−/− 234 1 12 123 4 3 4 1 Yes Yes No Yes
O/P1/P2 2 PSE 1 +/−/−/− 234 1 12 123 4 3 4 1 Yes No No Yes
Q/R1/R2 2 PSE 1 +/−/−/− 234 1 12 123 4 3 4 1 Yes No No Yes
S/T1/T2 2 PSE 1 +/−/−/− 234 1 12 123 4 3 4 1 Yes No Yes Yes

U/V1/V2 2 Reconfig. +/−/−/− 234 1 12 123 4 3 4 1 Yes No Yes Yes
W 2 PSE 2 +/+/−/− 234 34 12 123 123 134 124 123 Yes No Yes Yes
X 3 PSE 2 +/+/−/− 234 34 12 123 123 134 124 123 Yes No No Yes
Y 2 PSE 2 +/+/−/− 234 34 12 123 123 134 124 123 Yes No Yes Yes
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software parameters, a swarm state initialization, and planned swarm
maneuvers. After tables are verified onboard, each spacecraft changes
its attitude to the desired configuration. ARTMS software modules are
then startedwith nominal sample times of 60 s for IMP, SOD, theVBS,
and the ISL, and 90 minutes for BOD. Experiment and bus telemetry
are regularly downlinked for subsequent analysis and complete post-
facto experiment playback.

V. Software-in-the-Loop Preflight Verification

The ARTMS architecture is verified preflight through an exten-
sive set of software simulations. Performance of each module is first
validated individually, to confirm that each meets the required perfor-
mance standards for successful integration into the complete architec-
ture. ARTMS is subsequently validated usingMonte Carlo navigation
simulations. Simulationswere performed using anARTMS flight code
implementation inC++, aswill be flownonboard the Starlingmission,
and were run within a MATLAB/Simulink environment on a personal
computer.

A. Data Generation

To generate ground truth data for test cases, the positions and
velocities of swarm members were numerically integrated using
the Stanford Space Rendezvous Lab’s S3 software [50]. Dynamics
models are specified in Table 3. Spacecraft were physically modeled
as 6UCubeSatswith fixed attitude such that theVBSboresight points

in the�ŷW direction. In general, during StarFOX, swarmmaneuvers
are expected to be sufficiently large and well-known such that they
act to improve angles-only observability [30]. Unless otherwise
specified, maneuvers were not present in simulations to provide a
more challenging observability scenario.
Five synthetic measurement types were generated from the ground

truth: bearing angles, attitude quaternions, PVT navigation solutions,
an a priori swarm orbit state, and VBS images. Gaussian zero-mean
measurement noise was added to measurements as per Table 4. PVT
solutions,when used for either autonomous state initialization or during
SOD state refinement, are assumed to possess GNSS-level accuracy

(unless otherwise specified) given that StarFOX is conducted in LEO

where GNSS signals are consistently available. Bearing angles and

attitude quaternions possess a typical noise level for modern CubeSat

star trackers [8]. Uncertainty in the a priori state estimate is larger, to

both simulate larger uncertainties after a lengthy orbit propagation

period and typically larger uncertainties in the velocity direction. Bear-

ing anglemeasurement gaps causedbyeclipse periods and sun-blinding

of the cameraweremodeled and occurred for between 0 and 60%of the

orbit period. During IMP testing, 3–8 extra measurements were added

to each image to emulate passing RSOs and noncatalog stars, with

positions pulled from a uniform distribution across the FOV.
VBS images were generated using 3D vector graphics in OpenGL

[25]. The visual magnitudes of targets were modeled using a model

which takes various flux sources, solar phase angle, and physical

spacecraft properties into account [51]. The visual magnitudes, angles,

and proper motions of SOs were obtained from the Hipparcos star

catalog. Any objects within the camera FOVwere then rendered using

Gaussian point spread functions (PSFs). Background noise is added

to the image in the form of small variations in pixel brightness, pro-

ducing centroiding errors of ∼0.1 pixels. A small amount of noise is

also added to PSF positions to emulate errors in the camera lens

distortion model, which is used to convert between pixel coordinates

andunit vectors inV. Stray light fromEarth is notmodeled, because the

StarFOX attitude and camera have been selected to ensure that Earth is

exterior to the plannedFOV(and stray lightwas found to haveminimal

impact on imagery from ARGON and AVANTI [22,23]).
The simulated camera model applies the physical properties of a

Blue Canyon Technologies NST, which is the model StarFOX will

use in orbit. The camera has a resolution of 1280 × 1024 pixels and
an approximate FOV of 12 × 10 deg. Images consist of grayscale

pixels with brightness values from 0 to 1023.

B. Verification Performance Requirements

StarFOX mission requirements specify that the following criteria

must be met by ARTMS to enable mission success:
1) The IMP module shall deliver measurements of target objects

with combined centroiding and attitude determination errors below
one pixel or 35 0 0 (1σ), to support BOD and SOD in producing
accurate orbit solutions. This error is on par with conventional image
processing algorithms and flight experience [22].
2) The IMP module shall assign bearing angle measurements to

target objects with more than 99.5% precision. For the fastest nomi-
nal IMP sample time of 60 s, this implies fewer than one false-positive
measurement per target per two orbits, to support BOD and SOD in
producing accurate orbit solutions.
3) TheBODmodule shall deliver anROE solutionwith range error

below 20% of the true intersatellite separation when provided with
two orbits of measurements. This error level is deemed sufficient to
initialize SOD.
4) The SODmodule shall demonstrate steady-state convergence

within five orbits during maneuver-free experiments. This is on
par with existing simulation results and allows sufficient time to
reach convergence within each experiment block. In this context,
steady-state “convergence” is achieved when the rate of decrease
of all ROE state uncertainties in the filter has fallen below 10% per
orbit.
5) The SOD module shall provide estimates of the ROE state

accurate to within 2% (1σ) for δλ and within 1 meter per kilometer of
intersatellite separation (1σ) for all other state elements at steady-state
convergence. The δλ requirement stems from simulations and prior
flight experiments [14,22,23]; other ROE requirements are derived
from a worse-case measurement error budget of approximately 80 0 0
(encompassing combined centroiding errors, attitude determination
errors, image time-tag errors, and VBS mounting errors).
6) TheARTMSarchitecture shall consumenomore than 50%of the

onboard computer (OBC) execution time when all modules are oper-
ating are their nominal sample rates (60 s for IMP; 60 s for SOD; and
90 minutes for BOD). This ensures that modules run to completion
before the next call with a safety factor for unexpected computations
and other software tasks. Asynchronous tasks are assumed.

Table 3 Dynamics models for validation simulations

Model Perturbations Propagation

IMP Keplerian (none) Analytic
BOD J2 gravity Analytic [52]

SOD 10 × 10 GGM01S gravity model [2] RK4
integrator
30 s time step

Harris–Priester atmosphere with
cannonball drag model

Ground
truth

120 × 120 GGM01S gravity model [2] RK4
integrator
10 s time step

NRMLSISE-00 atmosphere with
cannonball drag model [53]
SRP with conical Earth shadow and
cannonball drag model
Third-body lunisolar gravity from
analytic ephemeris

Table 4 Default noise for validation simulations

Measurement Noise (1σ) Axes

Bearing angles �20; 20� 0 0 �α; ϵ�
VBS attitude �5; 5; 20� 0 0 �x̂V ; ŷV ; ẑV �
GNSS position [10, 10, 10] m �x̂I ; ŷI ; ẑI �
GNSS velocity [0.01, 0.01, 0.01] m/s �x̂I ; ŷI ; ẑI �
A priori position [100, 500, 100] m �x̂R; ŷR; ẑR�
A priori velocity [0.1, 0.5, 0.1] m/s �x̂R; ŷR; ẑR�
VBS pixel brightness 1.5% — —

VBS PSF position �5; 5� 0 0 �α; ϵ�
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C. IMP Verification

The IMP module is verified using Monte Carlo trials across a

variety of absolute and relative orbits representative of the Starling

mission. There are nine simulation datasets containing 100 simula-

tions each, as defined by themagnitude of relativemotion oscillations

in the radial-normal plane, and the amount of noise added to PSF
positions in simulated imagery. Notation is presented in Table 5.

Throughout these results (and subsequent sections), “IMP-A” refers

to the IMP-A-1, IMP-A-2, and IMP-A-3 datasets combined; simi-

larly, “IMP-1” refers to IMP-A-1, IMP-B-1, and IMP-C-1 combined.

Each simulation featured three targets uniformly distributed around

three separations: [60, 70] km, [125, 135] km, and [190, 200] km.
OEsΩ;ω;M and relative orbit phases θ,ϕwere uniformly distributed

in �0; 2π�. Other OEs were drawn from Starling-like ranges of

a ∈ �400; 700� km; e ∈ �0.0001; 0.01�; and i ∈ �90;105�°. Inputmea-

surements were synthetic VBS images and a single GNSS measure-

ment at the start of the tracking period to initialize the observer
absolute orbit estimate. Measurements spanned three orbits with a

VBS sample time of 120 s.
Table 6 presents the mean precision, recall, and accuracy of

measurement assignment across each dataset as well as the mean

measurement error and attitude error. Metrics are defined in terms of
true positives (TP), false positives (FP), true negatives (TN), and false

negatives (FN) as

accuracy � TP� TN

TP� TN� FP� TN
precision � TP

TP� FP

recall � TP

TP� FN
(22)

Accuracy assesses overall performance, precision focuses on reli-

ability of associations, and recall focuses on frequency of asso-

ciations. Precision is considered the most vital metric because

angles-only orbit determination filters are sensitive to measure-
ment errors and a single false positive can degrade the filter state

estimate [38]. Here, an assignment is false positive if the assigned

measurement was produced by a different target and is outside the

105 0 0 (3σ) error region surrounding the true target measurement.
For the IMP-A, IMP-B, and IMP-C datasets, measurement assign-

ment precision remains above the 99.5% threshold and false positives

are minimized as desired. Despite an emphasis on discarding ambigu-

ous measurements, recall remains above 80% and sufficient data are

retained for navigation. Performance is best for IMP-A because targets

possess very little motion and remain separated in the image plane.
Performance is lowest for IMP-Bbecause this scenario ismost likely to

produce target PSFs that overlap in the FOV: sufficient relative motion

is present for target tracks to potentially intersect, and motion is
constrained enough to ensure targets remain in close proximity (see
Fig. 12). Traditional centroiding algorithms cannot distinguish this
case and consider the joined PSFs to be one measurement, resulting in
one missing measurement and one inaccurate measurement that is
the average of the two. High overlap rates between targets are thus
detrimental and formation geometry formissions such as Starlingmust
be designed with this in mind. Nevertheless, IMP is able to continue
target tracking if only occasional intersections are present. Tracking
is also robust to added noise, as per the IMP-1, IMP-2, and IMP-3
datasets. In general, as more noise is added, precision and recall are
reduced as expected, and mean bearing angle errors and attitude
determination errors increase proportionally with noise.
The final IMP-MAN dataset investigates performance when one

swarm spacecraft maneuvers during tracking. Maneuvers were drawn
from a uniform distribution across spacecraft, execution time, direc-
tion, and magnitude, with magnitude Δv ∈ �0.1; 1� m∕s. Maneuvers
were impulsive and were executed with 5% (3σ) magnitude error and
1° (3σ) direction error. As per Table 6, the majority of maneuver cases
were successfully tracked, though maneuver presence does impact
reliability because resulting changes to target trajectories induce short
periods of high uncertainty. However, high precision ismaintained and
IMP is thus expected to fulfill Starling requirements.
Optical measurement availability also has an effect on perfor-

mance, noting that for StarFOX, the primary phenomena are eclipse
and sun-blinding periods. Figure 13 plots data association precision
versus increasing measurement gaps. Decreased measurement avail-
ability does produce lower precision because the SAMUS algorithm
encounters more discontinuities during tracking and must use less
information when assessing hypotheses. Nevertheless, precision
remains above the mission requirement threshold for measurement
gaps of up to 60%, indicating that the presented algorithms are
capable of tracking in a variety of mission scenarios.

D. BOD Verification

TheBODmodule is verified usingMonte Carlo trials across a variety
of absolute and relative orbits. There are nine simulation datasets
containing 100 simulations each, as defined by altitude and the magni-
tude of relative motion oscillations in the radial-normal plane. Notation
is presented in Table 7. Each simulation featured three targets uniformly
distributed around three separations: [60,70] km, [125,135] km, and

Table 5 IMP simulation datasets

Magnitude of RN
oscillations, m

PSF position noise, ′′

[0, 0] [5, 5] [10, 10]

100 IMP-A-1 IMP-A-2 IMP-A-3
600 IMP-B-1 IMP-B-2 IMP-B-3
2400 IMP-C-1 IMP-C-2 IMP-C-3

Table 6 Monte Carlo results (1σ) for IMP simulation subsets

Dataset Precision, % Recall, % Accuracy, % Bearing angle error, ′′ Quaternion error, ′′

IMP-A 99.90 � 0.27 85.84 � 10.70 96.24 � 2.68 9.6 � 6.9 10.7 � 6.9

IMP-B 99.60 � 1.23 82.89 � 10.43 94.31 � 4.69 12.1 � 16.6 10.4 � 7.1

IMP-C 99.73 � 0.60 84.01 � 11.20 95.43 � 3.50 11.2 � 11.0 10.8 � 7.0

IMP-1 99.81 � 0.39 86.57 � 10.21 94.96 � 4.14 1.8 � 1.0 2.4 � 0.3

IMP-2 99.75 � 0.54 83.62 � 10.77 94.99 � 4.12 11.3 � 4.7 10.9 � 1.7

IMP-3 99.71 � 0.61 80.05 � 10.72 96.03 � 2.92 19.7 � 8.3 18.5 � 3.6

IMP 99.78 � 0.49 84.23 � 10.81 95.24 � 4.08 10.3 � 8.8 10.6 � 7.0

IMP-MAN 99.49 � 2.03 79.10 � 13.35 93.97 � 8.71 18.1 � 48.3 10.6 � 7.0

Fig. 12 Example of connected PSFs for three targets in proximity in the
FOV.
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[190,200] km. OEs Ω;ω;M and relative orbit phases θ, ϕ were uni-
formly distributed in �0; 2π�, while other orbit properties such as incli-
nation and eccentricity were fixed to emulate the Starling case. Input
measurementswere synthetic bearing angles, attitude quaternions, and a
singleGNSSmeasurement at theBODestimation epoch to initialize the
observer absolute orbit estimate.Measurements spanned twoorbitswith
an IMP sample rate of 60 s.
Figure 14 presents cumulative distribution functions (CDFs) for

state estimation errors and 1σ uncertainties computed by the BOD
algorithm across sets BOD-A, BOD-B, and BOD-C. In the tested
scenarios, altitude had minimal impact on performance due to the
limited effects of atmospheric drag. Thus, results are grouped by the
magnitude of relative oscillations. Some estimation errors and uncer-
tainties are also normalized by δλ for convenience of comparison.
Figure 15 illustrates that estimation performance for δa; δλ; δex; δey

shows linear behavior with separation—especially in scenarios with
limited relative motion—because these ROE define the in-plane
relative orbit. Performance for δix and δiy, which define the out-of-

plane relative orbit, displays less dependence on separation.
In the BOD-A case, which emulates the Starling in-train forma-

tion, it is clear that estimates for δa and δλ possess large uncertainties
and errors. The δλ estimate is especially poor with errors frequently
on the order of target range and uncertainties much larger than target
range. Semimajor axis estimation is similarly poor with errors of
several hundred meters and larger uncertainties. This is because δλ
primarily manifests in measurements as a small bias in the elevation
angle of the target. If there is very little relative motion (as in the
BOD-A dataset), as well as significant sensor noise, it is particularly
difficult for the algorithm to determine whether its δλ estimate is
correct with any certainty. This subsequently leads to difficulties in
distinguishing a and δa, which also affect radial position and eleva-
tion angle. Combined, δλ; δa, and a present a weakly observable
mode. As a result, StarFOX does not intend to apply the autonomous
BOD initialization during in-train operations (as per Table 2), instead
choosing to rely on a priori state information uplinked from the
ground.
Estimation performance is much improved in the BOD-B case,

which emulates a Starling PSE formation with moderate relative
motion. Errors in δλ are less than 20% of target separation in 98%
of cases, whereas uncertainties are less than 50% of target separation
in the majority of cases. Errors in δa are less than 0.1% of separation
in 85% of cases, whereas other ROEs meet this threshold in 95% of
cases. This level of performance consistently approaches BOD mis-
sion performance requirements.
Finally, BOD-C case presents a PSE formation with significant

relative motion. Estimation performance improves further for a; δa
and δλ, with δλ observingmaximum errors of 10%of target range and
maximum uncertainties of 20% of target range. As expected, larger
magnitudes of oscillation in the RN plane greatly improve observ-
ability, especially for weakly observable state components such as
target range. Conversely, the estimation of more strongly observable
state components such as the relative inclination vector is more
agnostic to formation geometry.
Performance is also affected bymeasurement availability. Figure 16

presents variations inBODperformance asmeasurement availability is

Table 7 BOD simulation datasets

Magnitude of RN
oscillations, m

Altitude, km

400 550 700

100 BOD-A-1 BOD-A-2 BOD-A-3
600 BOD-B-1 BOD-B-2 BOD-B-3
2400 BOD-C-1 BOD-C-2 BOD-C-3
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Fig. 13 Effects of measurement availability on IMP performance.
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Fig. 14 CDFs for ROE state estimate errors and uncertainties during BOD simulations.

14 Article in Advance / KRUGER, KOENIG, AND D’AMICO

D
ow

nl
oa

de
d 

by
 J

us
tin

 K
ru

ge
r 

on
 J

un
e 

27
, 2

02
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.A
35

59
8 



reduced. Fewermeasurements tends to lead to larger estimation errors,
because the iterative least-squares problem and corresponding opti-
mization problem within BOD must be solved using less information
about the target’s relative orbit trajectory. Nevertheless, when consid-
ering the experiment phases and geometries duringwhich it is intended
to be used, BOD fulfills performance requirements on δλ estimation in
more than 98% of simulations.

E. SOD Verification

The SOD module is verified using single-observer Monte Carlo
trials across a variety of absolute and relative orbits. There are nine
simulation datasets containing 100 simulations each, as defined by
initial position uncertainty and the magnitude of relative motion
oscillations in the radial-normal plane. Notation is presented in
Table 8. Orbit scenarios were similar to the prior BOD datasets,
but with altitude uniformly distributed in a Starling-like range of
[540,560] km. Input measurements were synthetic bearing angles
(i.e., not extracted from images), attitude quaternions, and GNSS
measurements, with SOD, VBS, and GNSS sample times of 60 s.
Note that because only a single observer is present, regular GNSS
updates are necessary to maintain absolute orbit convergence. The
estimation period consisted of five orbits using the SOD dynamics

model of Table 3. Impulsive maneuvers were also included for a

specified set of trials. Maneuvers were classified as either a formation

reconfiguration, in which the observer performs a large maneuver

within the first 2 h of the simulation with Δv ∈ �0.1; 1� m∕s; or
formation keeping, in which randomly chosen system members

perform a small maneuver every 2 h throughout the simulation with

Δv ∈ �0.01; 0.1� m∕s. Maneuvers were drawn from a uniform distri-
bution across execution time, magnitude, and direction, and were

executed with varying magnitude and direction errors (detailed later

in Table 9).
Figure 17a presents SOD relative orbit estimation errors and 3σ

uncertainties for the three target RSO in a single trial in dataset SOD-

B; aswell as theMonteCarlo values for SODestimation errors and 3σ
uncertainties across all trials in SOD-B. Errors are computed as the

difference between the filter state estimate and ground truth simu-
lation states. The figure also reports SOD errors and 1σ state uncer-

tainties at the five-orbit convergence time requirement. It is evident

that SOD is able to quickly reduce errors and uncertainties in the

estimated ROEs, even in the presence of significant measurement

gaps. The δλ estimate converges slowest, as expected, but still dis-

plays convergence without requiring maneuvers. Filter errors remain

within 3σ bounds for both the individual trial and the Monte Carlo

averages, demonstrating that the filter has been tuned adequately and

is in good health. Figure 17b presents performance for a reconfig-

uration maneuver case. The impulsive maneuver after 2 h produces a
rapid decrease in the estimated ROE uncertainty, which indicates that

maneuvers provide strong benefits for angles-only observability.
Figure 18 presents SOD state estimate uncertainty (1σ) for the 100

simulations and 300 targets in SOD-B-2, during the entire 24 h

simulation period. The Monte Carlo performance mean and its 3σ
bounds are also plotted. Filter performance appears similar across all
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Fig. 15 Mean estimation errors versus mean separation for each target in the BOD dataset.
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Fig. 16 BOD range estimation error versus measurement availability.

Table 8 SOD simulation datasets

Magnitude of RN
oscillations, m

Initial position uncertainty, km

5 10 20

100 SOD-A-1 SOD-A-2 SOD-A-3
600 SOD-B-1 SOD-B-2 SOD-B-3
2400 SOD-C-1 SOD-C-2 SOD-C-3
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trials (with some variation due to target range, measurement gaps,

and initial state errors) and state estimates remain convergent during

the simulation period. Final errors are less than 1500 m in δλ and less
than 40 m in other ROEs. Uncertainties in δa and δλ decrease most

significantly during the first three orbits and continue to improve over

subsequent orbits. Uncertainties in the other ROEs reach steady state

after one orbit.

Figure 19 presents CDFs for SOD state estimation errors at the

five-orbit convergence time requirement. Errors are normalized by δλ
for convenience of comparison. First, consider estimation of δλ. For
SOD-1 (the best initial position uncertainty), errors remain below 2%

in 82%of cases for SOD-A and are always below 2% for SOD-C. For

SOD-3 (the worst initial position uncertainty), δλ estimation errors

meet the 2% specifications for 58% of SOD-A cases, 84% of SOD-B

cases, and 93% of SOD-C cases. The 1σ initialization error of 20 km
in SOD-3 is particularly large when compared to the 65 km range of

the closest target and some degradation is therefore expected. For the

most challenging case of SOD-A-3, samples meeting the perfor-

mance requirement tended to be those with lower initial errors;

nevertheless, 82% of SOD-A-3 samples saw a reduction in δλ error
over the course of the simulation.

Next, consider estimation of other ROEs. For SOD-1 (the best

initial position uncertainty), estimation errors are below the 0.1%

target range requirement for all cases studied, displaying strong

steady-state performance. For SOD-3 (the worst initial position

uncertainty), the most significant degradation is seen in the estima-

tion of δa for in-train formations, such that 76% of these trials

remained below the 0.1% error requirement for δa. Overall, even
when the initialization is poor—due to either challenging BOD

conditions or poor external state information—SOD robustly fulfills

performance goals in the majority of scenarios. Figure 19 also

provides a CDF for the time taken for the filter to meet steady-state

Table 9 SOD performance with maneuvers present

Maneuver execution error Mean steady-state performance

Dataset Maneuver case
Mag. error
(3σ), %

Dir. error
(3σ), °

Pos. error
(1σ), km

Pos. uncertainty
(1σ), km

Convergence
time, h

SOD-A-2 None — — — — 1.55 1.78 5.48
SOD-A-2 Reconfiguration 2 1 0.68 1.19 3.00
SOD-A-2 Reconfiguration 5 2 0.71 1.20 2.98
SOD-A-2 Reconfiguration 10 5 0.80 1.27 2.95
SOD-A-2 Formation-keeping 2 1 1.17 1.27 6.26
SOD-A-2 Formation-keeping 5 2 1.19 1.27 6.26
SOD-A-2 Formation-keeping 10 5 1.28 1.27 6.26

SOD-B-2 None — — — — 0.74 1.35 3.60
SOD-B-2 Reconfiguration 5 2 0.77 1.10 2.52
SOD-B-2 Formation-keeping 5 2 0.50 0.79 4.97

SOD-C-2 None — — — — 0.46 0.75 2.31
SOD-C-2 Reconfiguration 5 2 0.83 0.74 1.93
SOD-C-2 Formation-keeping 5 2 0.36 0.32 2.78

Fig. 17 SOD performance during nominal single trials and across Monte Carlo trials.
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error requirements. The expected trends are observed, in that this

time is lengthened when initialization errors are larger and/or when
the relative motion of the formation is less observable. This is most

evident for the SOD-A formation, which may only meet the 5 h

convergence time requirement in 50% of cases. Measurement avail-

ability was also found to affect convergence time, primarily in less-

observable scenarios, which may take one or two additional orbits to

reach convergence in the presence of long eclipse or camera-blinding

periods.

Finally, it is necessary to assess performance in the presence of

maneuvers. Table 9 presents the influence of maneuvers on steady-
state position error, uncertainty, and convergence time. Simulations

demonstrate that reconfigurations early in the tracking period signifi-

cantly speed up convergence, especially for the in-train SOD-A sce-

nario. Steady-state errors and uncertainties are also reduced. This is

because the dynamic effects of known maneuvers on measurements

allow the filter to quickly and accurately disambiguate target range.

Equivalently, as maneuver execution errors increase, performance

Fig. 18 Standard deviations of relative state estimates for SOD operating on the SOD-B-2 dataset.
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Fig. 19 CDFs for steady-state estimation errors and convergence times during SOD simulations.
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tends toworsen. Notably, a single reconfiguration is less beneficial for
the SOD-B and SOD-C scenarios (which are already more observable
than SOD-A due to their relative motion). Consistent formation-
keeping maneuvers in these scenarios prove more beneficial because
they allow the system to improve observability and estimation perfor-
mance beneath the limits provided by standard relative motion.
Formation-keeping therefore implies longer convergence times also.
Overall, SOD meets stated performance requirements in more than
95% of test cases, with and without swarm maneuvers, provided that
state initialization errors are reasonablewhen compared to target range.

F. ARTMS Verification

Verification of the integrated architecture was conducted using a
MATLAB Simulink model featuring four simultaneously operating
ARTMS instances, to simulate the complete Starling swarm with a
realistic ISL. In addition to the noise sources described in Table 4,
time-tag noise of up to 20 ms was added to VBS images and time-tag
noise of up to 1 ms was added to GNSS measurements. This corre-

sponds to the expected worst-case timing errors when transferring

data from the spacecraft bus to ARTMS during the mission. Meas-

urement time-tags were offset from IMP, SOD, and BOD sample
times to enforce additional state propagation and synchronization

within ARTMS.
As with individual module tests, ARTMS was validated across a

variety of randomly generated scenarios, drawn from the orbit ranges

in Table 10. Performance was also investigated for the different

experimental configurations in Table 2. Recall that different configu-
rations affect swarm geometry; usage of external states or onboard

methods for initialization of navigation; and whether GNSS mea-

surements or only bearing angles are used for observer absolute orbit
estimation. Ten four-spacecraft simulations were performed for each

configuration. Each simulation generates 4 absolute orbit estimates

(1 per observer) and 9 or 10 relative orbit estimates, depending on the

attitude configuration. The simulation period consisted of 24 h with
samples rates of 120 s for synthetic VBS images, GNSS, IMP, and

SOD, and 3 h for BOD. Adaptive process noise estimation was

applied in SOD.
Figure 20 presents CDFs for relative orbit estimation errors in four

configurations:
1) K/L: 1 observer, PSE formation, BOD initialization, using

GNSS for absolute orbit updates
2) C/D: 1 observer, IT formation, ground initialization, using

GNSS for absolute orbit updates
3) E/F: 2 observers, IT formation, ground initialization, using

GNSS for absolute orbit updates
4) O/P: 2 observers, PSE formation, BOD initialization, using only

bearing angles for absolute orbit updates
PSE formations meet ARTMS performance goals in all trials,

whereas IT formations meet performance requirements in 88% of

trials (single observer) and 96% of trials (two cooperative observers).

The δλ error requirement proves the most challenging to fulfill.
However, multi-observer measurement fusion is able to significantly

reduce state estimate error, demonstrating the observability advan-

tage gained by a distributed stereo-vision approach.
Figure 21 presents CDFs for absolute orbit estimation errors in

four configurations:
1)G/H: 2 observers, IT formation, ground initialization, using only

bearing angles for absolute orbit updates

Table 10 OE and ROE ranges
for ARTMS simulations

Parameter Value

Observer OEs

a �km� [6883, 6983]

e [0.0001, 0.01]

i (°) [93, 103]

Ω (°) [0, 360]

ω (°) [0, 360]

M (°) [0, 360]

Target ROEs

δa �km� [−0.05, 0.05]
δλ �km� [30, 300]

δex �km� [−5, 5]
δey �km� [−5, 5]
δix �km� [−5, 5]
δiy �km� [−5, 5]
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Fig. 20 CDFs for ROE estimation errors 24 h after ARTMS initialization.
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2)O/P: 2 observers, PSE formation, BOD initialization, using only
bearing angles for absolute orbit updates
3) X-IT: 4 observers, IT formation, ground initialization, using

only bearing angles for absolute orbit updates
4) X: 4 observers, PSE formation, BOD initialization, using only

bearing angles for absolute orbit updates

OE errors are multiplied by the observer semimajor axis for

interpretation as position errors in meters. Although no specific

performance goals are put forth for absolute orbit estimation using

angles-only measurements, it can be observed that PSE formations

produce smaller estimation errors, as expected. The semimajor axis is

most observable (further justifying its estimation within BOD also),

whereas the mean argument of latitude is least observable. There

exists a poorly observable mode whereupon errors in u are closely

correlated to errors in δλ, since both state components affect space-

craft positioning along the orbit path. Absolute position errors after

24 h are typically on the order of hundreds ofmeters and it is therefore

expected that observability will be sufficient for ARTMS to demon-

strate angles-only absolute orbit determination in flight.

Table 11 presents a summary of mean position estimation errors

and uncertainties in different configurations. Some trials applyGNSS

corruption, in which GNSS measurements possess 10 times the

default amount of noise, to emulate scenarios in which absolute

position information is of lower quality (e.g., deep space scenarios).

Some trials also include known impulsivemaneuvers by the observer

withΔv ∈ �0.1; 1� m∕s.Maneuvers possess random execution times,

magnitudes, and directions and were executed with 5% (3σ) magni-

tude error and 1° (3σ) direction error.
In Table 11, the ARTMS architecture meets performance require-

ments in that relative position estimates and uncertainties are con-

sistently below 2% of target range. Maneuvers continue to aid

observability, most obviously for the single-observer in-train case

(configuration C/D), which possesses the weakest observability.

Maneuvers have a much smaller impact in multi-observer cases
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Fig. 21 CDFs for OE estimation errors 24 h after ARTMS initialization.

Table 11 Mean position estimation errors and covariances for ARTMS simulations

Absolute position Relative position

Config. Modification Error (1σ), m Uncertainty (1σ), m Error (1σ), % Uncertainty (1σ), %

C/D —— 5 � 2 12 � 0 0.72 � 0.78 0.70 � 0.50

C/D PSE formation 6 � 3 12 � 0 0.10 � 0.10 0.21 � 0.20

C/D Maneuvers present 5 � 2 12 � 1 0.44 � 0.41 0.50 � 0.31

E/F —— 7 � 3 13 � 2 0.21 � 0.36 0.19 � 0.24

G/H —— 670 � 480 900 � 400 0.58 � 0.92 0.68 � 0.60

K/L —— 6 � 2 13 � 1 0.10 � 0.15 0.28 � 0.26

K/L No adaptive proc. noise 6 � 2 20 � 0 0.12 � 0.18 0.42 � 0.33

K/L GNSS corruption 21 � 8 59 � 2 0.11 � 0.13 0.29 � 0.26

O/P —— 140 � 40 360 � 200 0.05 � 0.06 0.13 � 0.10

O/P No adaptive proc. noise 170 � 40 480 � 140 0.04 � 0.05 0.14 � 0.11

O/P Maneuvers present 130 � 30 330 � 180 0.05 � 0.05 0.12 � 0.08

O/P GNSS corruption 230 � 80 370 � 210 0.05 � 0.06 0.14 � 0.11

X —— 150 � 40 250 � 120 0.05 � 0.05 0.12 � 0.10

X In-train formation 670 � 350 690 � 240 0.41 � 0.46 0.53 � 0.41
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(configuration O/P), which may already disambiguate range via
measurement sharing. In caseK/L (which does receive regular GNSS
measurements), GNSS corruption produces the expected increase in
absolute state errors but has little effect on relative state errors.
However, in case O/P (which does not receive regular GNSS mea-
surements), GNSS corruption reduces the quality of the one-off
absolute orbit estimate used in BOD. This in turn reduces the quality
of the output BOD swarm state estimate, slightly worsening absolute
and relative estimation performance. However, the performance
degradation is minor and ARTMS is overall robust to GNSS errors.
Adaptive process noise estimation is also shown to reduce state
uncertainty, supporting its usage in orbit.

VI. Hardware-in-the-Loop Preflight Verification

ARTMS is next verified using HIL elements. First, navigation
simulations featuring a Blue Canyon Technologies NST verify that
ARTMS can operate on real camera images. Second, night sky image
processing tests featuring the integrated star trackers on board each
spacecraft verify that ARTMS can obtain accurate measurements
from integrated cameras. Third, navigation simulations running on a
CubeSat OBC verify that ARTMS execution times are compliant
when run on CubeSat hardware.

A. Camera-in-the-Loop Simulations

HIL images were retrieved from a Blue Canyon Technologies
NST as stimulated by the Stanford SLAB Optical Simulator (OS).
The OS is a variable-magnification testbed consisting of two lenses
and amicrodisplay. Synthetic space scenes are generated and shown
on the display and by moving the lenses and display relative to each
other, the VBS under test is stimulated with appropriate magnifi-
cation. The OS is calibrated such that the VBS image is similar in
radiosity and geometry to what would be observed in orbit. Devel-
opment, calibration, and usage of the OS are detailed in [25] with
achievable errors between desired and measured bearing angles
of less than 10 0 0. HIL images were taken for two IT scenarios and
two PSE scenarios across 16 h and subsequently ingested into the
MATLAB/C++ simulation framework. Other measurement inputs
were the same as during software-only simulations.
Figures 22 and 23 present SOD estimation errors and uncertain-

ties from a camera-in-the-loop simulation of experiment O/P.
Absolute orbit statistics are multiplied by the semimajor axis for
interpretation as position errors. During the simulation, the IMP

module provides consistent measurement assignment and the BOD
initialization produces initial state errors on the order of seve-
ral kilometers. The SOD absolute and relative state estimates sub-
sequently converge to steady-state values within several hours without
maneuvers, and measurement sharing is utilized to achieve improved
relative orbit determination and angles-only absolute orbit determina-
tion. Table 12 compares performance when using synthetic imagery
versus HIL imagery for four experiment configurations.
Results are comparable between synthetic and HIL trials, indicat-

ing that ARTMS is able to operate on real camera imagery.

B. Integrated Camera Night Sky Tests

The level of bearing angle measurement error when using
integrated hardware is investigated by comparing the inertial unit
vector measurements produced by star tracker onboard algorithms
(previously verified by the manufacturer) to the inertial unit vec-
tor measurements produced by ARTMS algorithms. Images con-
taining point sources with known locations are obtained by taking
night sky images with each Starling spacecraft, as in Fig. 24.
“Ground truth” inertial unit vectors are those of identified stars
as obtained from the Hipparcos star catalog, expressed in I .
Measured ARTMS unit vectors to identified stars inV are obtained
using the IMP algorithm described in Sec. III.C. Vectors are then

rotated into I for comparison using the attitude estimate
V ~R

I
com-

puted by ARTMS. A key step is the conversion of pixel coordinates to
true unit vectors, which requires use of a camera model to compensate
for known lens distortions.Distortionsmay introduceunit vector errors
on the order of tens or hundreds of arcseconds, preventing successful
star identification and introducing significantmeasurement errors. The
distortion model used by ARTMS is polynomial with calibrated
coefficients for each individual camera. Note that this model was not
used in Sec. VI.A because camera distortions become coupled with
the OS facility distortions and were thus removed during facility
calibration.
Table 13 presents inertial unit vector errors. Errors remain well

below the stated IMP performance requirement of 35 0 0 (1σ), indicat-
ing that the camera distortion model is appropriate and that the star
trackers and IMP are able to provide suitable angles-only measure-
ments toBODandSOD.The larger errors observed by SN4Tracker 1
are caused by a poorer calibration model in the far upper left corner
of the image plane. However, the model remains sufficient for star
identification; furthermore, target RSOs will typically be located
much closer to the image center.

Fig. 22 Estimation errors and formal covariances for the observer absolute orbit estimate with a camera in the loop.
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C. CubeSat Microprocessor Performance Profiling

ARTMS modules were profiled on a Tyvak ARM Cortex-A8+

microprocessor running at 800 MHz. For comparison, the Starling

spacecraft employ Xilinx Q7S ARM Cortex-A9 microprocessors

running at up to 766 MHz. During profiling, the IMP and SOD

modules performed 10 successive executions on pregenerated test
data for experiment configuration M/N, whereas the BOD module
was executed once. The primary computation costs for SOD arise
from the number of measurement updates, dynamics model fidelity,
and amount of state propagation performed within the filter. Primary
computation costs for IMP arise from the numbers of tracked targets
and visible stars and whether a prior attitude estimate is provided
to assist with star identification. Primary computation costs for BOD
arise from the number of targets, number of range samples, and
measurement batch size. Experiment M/N is considered typical in
that it features two cooperative observers each obtaining bearing
angles to three targets, with regular GNSS absolute orbit updates.
To increase computation costs, no attitude estimate was provided to
IMP, and additional state propagation was enforced within SOD to
synchronize measurement epochs to module execution epochs. The
SOD dynamics model was that in Table 3. BOD processed a 200-
measurement batch using 150 range samples, which is the maximum
batch size with a nominal number of range samples.
Table 14 presents module execution times across 10 tests. For

the fastest nominal sample times of 60 s (IMP and SOD) and
90minutes (BOD), themaximum observed execution times require

Table 12 State estimation performance
comparison for HIL simulations

Position error (1σ)

Config. Modification Absolute, m Relative, %

C/D —— 5 � 16 0.82 � 1.26

C/D HIL 5 � 16 0.71 � 1.18

K/L —— 5 � 18 0.13 � 0.43

K/L HIL 5 � 18 0.15 � 0.40

X PSE 90 � 360 0.07 � 0.21

X HIL, PSE 160 � 360 0.05 � 0.20

X In-train 520 � 1100 0.44 � 0.97

X HIL, in-train 630 � 1060 0.21 � 0.98

Fig. 24 A night sky image taken by Starling SN4 from the roof of the
NASA Ames Research Center.

Fig. 23 Estimation errors and formal covariances for target relative orbit estimates with a camera in the loop.

Table 13 Measurement errors of integrated star trackers

Tracker 1 meas. error, ′′ Tracker 2 meas. error, ′′

Spacecraft [Min., Max.] Mean (1σ) [Min., Max.] Mean (1σ)

SN1 [5.8, 26.9] 12.0 � 4.3 [3.2, 24.6] 13.9 � 6.3

SN2 [3.2, 20.9] 11.3 � 4.7 [5.4, 19.2] 12.8 � 4.3

SN3 [1.6, 16.4] 7.4 � 3.7 [1.2, 17.0] 10.4 � 5.0

SN4 [5.4, 72.3] 13.1 � 8.7 [2.1, 16.6] 8.4 � 5.1

Table 14 ARTMS execution times during performance profiling

Module

Execution time, s

[Min., Max.] Mean (1σ)
Max. % of
sample time

SOD [9.81, 12.09] 10.68 � 0.89 20.2

IMP [6.48, 12.61] 8.03 � 2.45 21.0

BOD [610.8, 611.6] 611.1 � 0.27 11.3

All —— —— 52.5
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approximately 20% of OBC time (IMP and SOD) and 10% of OBC
time (BOD). This implies that ARTMS may require ∼50% of total
OBC time, close to the mission requirement constraint. However, if
anomalous performance is observed in orbit, ARTMS parameters
may be tuned to reduce computation by, e.g., reducing the number
of allowed target track hypotheses in IMP, reducing SOD dynamics
model fidelity, or reducing the number of BOD range hypotheses,
without significant impacts on accuracy.

VII. Conclusions

This paper presents an overview of the Starling Formation-Flying
Optical Experiment (StarFOX), intended as the first in-flight dem-
onstration of autonomous distributed angles-only navigation for a
spacecraft swarm. Prior demonstrations of angles-only navigation in
orbit have displayed only single-observer–single-target navigation
and have required external orbit information and/or system maneu-
vers to achieve orbit determination. StarFOX instead applies the new
angles-only Absolute and Relative Trajectory Measurement System
(ARTMS), an architecture that provides autonomous, distributed,
and scalable navigation for distributed systems in deep space using
inexpensive optical sensors. Its multi-observer multitarget frame-
work is able to achieve complete swarm orbit determination with
minimal external orbit information and without maneuvers. ARTMS
consists of three modules: image processing (IMP), batch orbit deter-
mination (BOD), and sequential orbit determination (SOD). The IMP
module provides batches of measurements to each observed target
using time-tagged images from the onboard camera and a single
coarse estimate of the observer’s orbit. The BOD module uses these
batches of bearing angles to each target, along with the observer orbit
estimate, to provide estimates of the orbits of each observed system
member. Finally, the SOD module refines system orbit estimates
(as well as auxiliary parameter estimates such as ballistic coefficients
or differential clock offsets) by seamlessly fusingmeasurements from
multiple observers received over an intersatellite link within an
unscented Kalman filter.
To validate each algorithm, module performance is assessed via

Monte Carlo simulations of representative StarFOX scenarios in the
context ofmission performance requirements. IMP simulations dem-
onstrate measurement assignment precision of more than 99.9% in
near-circular orbits and measurement errors below one pixel (1σ).
BOD simulations demonstrate target range estimation errors of less
than 20% in more than 95% of trials. SOD simulations demonstrate
convergence to target range errors of less than 2%, and errors in other
ROEs that are less than 0.1% of target range, within five orbits in
more than 95% of trials. Performance is affected by the amount of
relative motion in the swarm, the amount of state initialization error,
and the frequency of target overlap in the field of view, but is overall
robust and meets requirements in the majority of cases.
The complete ARTMS architecture is verified with software- and

hardware-in-the-loop simulations of StarFOX experiments using
ARTMS flight code, CubeSat star trackers, and a CubeSat onboard
computer. ARTMS is able to autonomously initialize navigation and
demonstrates measurement sharing and fusion between multiple
observers, achieving simultaneous absolute and relative orbit deter-
mination using angles-only measurements. Angles-only absolute
position errors converge to less than 500 m if the swarm possesses
sufficient relative motion. ARTMS is also able to operate on repre-
sentative imagery collected by a star tracker and execution times on a
CubeSat microprocessor remain below 50% of nominal sample
times. Results verify that ARTMS is capable of fulfilling StarFOX
objectives, thus increasing the readiness level of critical technologies
for future deep space or space domain awareness missions.
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