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This paper addresses the development and verification of an estimation architecture for autonomous relative

navigation in multi-satellite systems using angles-only measurements. Unlike traditional angles-only navigation

approaches, which are generally hindered by poor handling of observability constraints, this prototype solution is

designed to be flexible and applicable to a multitude of relevant missions. The estimator converges accurately and

robustly in varying orbital environments without requiring maneuvers by exploiting system nonlinearities using an

unscented Kalman filter that is streamlined by formulating the measurement and dynamics models using relative

orbital elements.While themajority of priorworkhas focused on only solving for the relativemotion of a single target,

the approach here enables estimation of several additional parameters. Keydesign trades are evaluated for estimating

additive sensorbiases, target ballistic properties in environmentswith strongnonconservativeperturbations, adaptive

process noise statistics, and the absolute orbit of the observing satellite. The architecture is generalized for relative

navigation with multiple targets, and for decentralized estimation using multiple coordinated observers. These filter

strategies are used to inform the development of a novel on-orbit demonstration of angles-only navigation known as

the Starling Formation-flying Optical eXperiment (StarFOX) in partnership with NASA. Key hardware-in-the-loop

algorithm verification results for StarFOX-specific scenarios are provided.

I. Introduction

FOLLOWING from the successes of recent flagship spacecraft

formation-flying demonstrations, including GRACE (NASA)

[1], TanDEM-X (DLR) [2], PRISMA [3], and the Magnetospheric

Multiscale (MMS) mission (NASA) [4], active research and develop-

ment efforts are now transitioning to spacecraft swarmconcepts [5–10].

Swarms promise an expansion of the benefits offered by traditional

low-scale formations, including additional redundancy from single-

point failures, mission flexibility, and new domains of application. In

particular, newmissions for deep space exploration, on-orbit assembly

of large structures, and distributed sensing using sparse aperture

arrays or distributed antennae are all enabled by spacecraft swarms.

These platforms, however, will be largely characterized by a duality of

requiring improved situational awareness and navigation capability to

avoid collision, while also consisting of smaller, cost-effective satellites

with minimal computational and sensing capabilities. Accordingly,

spacecraft of these envisioned formation-flying and swarm concepts

must satisfy increasingly strict requirements on dynamics, guidance,

navigation and control accuracy, autonomy in early phases of the

mission, and resource efficiency. With these constraints in mind, this

paper addresses the development of a generalized navigation architec-

ture using a vision-based estimation technique known as angles-only

navigation, culminating in the design of a novel on-orbit experiment

that will enable future multi-satellite missions flying in Earth orbit and

beyond.

In angles-only navigation, an observing spacecraft seeks to esti-

mate the relative orbital state of target space objects that appear only

as small clusters of pixels in the camera field of view. These pixel

centroids intrinsically describe line-of-sight vectors that point from

the observer’s camera frame to the targets and are each subtended by a

set of two angles, denoted as the bearing angles. In the context of

autonomous satellite swarms, the use of vision-based sensing is

motivated by the fact that it provides a robust, high dynamic-range,

and passive navigation capability that uses simple sensors that are

already on board most spacecraft. Furthermore, because of their low

cost, low power consumption, and small form factor, vision-based

sensors (VBSs) enable accurate relative navigation while also com-

plementing the current trend of spacecraft miniaturization.

Despite these many advantages, navigation algorithms designed

to use angles-only measurements incur several distinct challenges.

First and foremost, limited dynamical observability resulting from

using 2D bearing angles makes the complete estimation of the 6D

relative orbital motion of a target space object difficult or impossible

[11–13], particularly when using linear dynamics and measurement

models. When angles-only estimation is successful, the convergence

timescale is on the same order as the orbital period. Conducting

known orbital maneuvers of the observing spacecraft has become a

common solution employed in the literature to yield filter convergence

[12,14–16], because doing so generates a known variation in the

bearing angle trends that canbe exploited to reconcile the unobservable

relative range. However, this approach has the undesirable effect of

strongly coupling the achievable relative navigation accuracy with the

maneuver-planning task and must be repeated periodically to correct

filter estimate divergence. Furthermore, the majority of research stud-

ies have been limited to low Earth orbit (LEO) applications, and

generally involve scenarios between only two satellites. A noteworthy

exception to the latter comes from the research of Wang et al. [17],

wherein a consensus Kalman filtering strategy is pursued using mea-

surements of a single target from multiple observers. Although the

analytic backing for that approach is strongly conveyed, the simplified

simulation testing against a minimalistic truth model and without

extensive considerationof realistic noise and error sources leavesmuch

to be proven about its practical performance capability in actual on-

orbit applications. As a final note of deficiency in the current literature,

improper treatment of the limited dynamical observability inherent to

angles-only navigation has generally resulted in estimation architec-

tures with limited applicability beyond basic orbital state estimation;

additional useful parameters like sensor biases, ballistic properties,

Received 3 June 2020; revision received 31 October 2020; accepted for
publication 12 December 2020; published online 23 April 2021. Copyright ©
2021 by the authors. Published by the American Institute of Aeronautics and
Astronautics, Inc., with permission. All requests for copying and permission
to reprint should be submitted to CCC at www.copyright.com; employ the
eISSN 1533-3884 to initiate your request. See also AIAA Rights and Permis-
sions www.aiaa.org/randp.

*Stanford Aeronautics & Astronautics Department; also Senior Guidance,
Navigation, andControlEngineer,AstranisSpaceTechnologies, SanFrancisco,
CA; jsullivan0926@gmail.com.

†Postdoctoral Researcher, Stanford Aeronautics & Astronautics Depart-
ment, Durand Building, 496 Lomita Mall.

‡Doctoral Candidate, Stanford Aeronautics & Astronautics Department,
Durand Building, 496 Lomita Mall.

§Assistant Professor, Space Rendezvous Laboratory Director, Stanford
Aeronautics & Astronautics Department, Durand Building, 496 Lomita
Mall.

1087

JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS

Vol. 44, No. 6, June 2021

D
ow

nl
oa

de
d 

by
 S

T
A

N
FO

R
D

 U
N

IV
E

R
SI

T
Y

 o
n 

A
ug

us
t 2

4,
 2

02
2 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.G
00

54
39

 

https://orcid.org/0000-0001-7483-7557
https://orcid.org/0000-0002-5880-0567
https://doi.org/10.2514/1.G005439
www.copyright.com
www.copyright.com
www.copyright.com
www.aiaa.org/randp
http://crossmark.crossref.org/dialog/?doi=10.2514%2F1.G005439&domain=pdf&date_stamp=2021-04-23


observer absolute orbital state, and mismodeled (or completely
unknown) maneuvers are simply not accounted for at all.
Angles-only navigation has been demonstrated in two major

on-orbit experiments. The first of these, the Advanced Rendezvous
Demonstration using Global Positioning System and Optical Navi-
gation (ARGON) [18], was successfully conducted in 2012 during
the PRISMA mission. Using ground-based image processing, rela-
tive orbit determination, and maneuver planning, ARGON demon-
strated non-cooperative rendezvous from 30 km to as close as 3 kmof
separation between the two satellites. The next breakthrough angles-
only experiment was the Autonomous Vision Approach Navigation
and Target Identification (AVANTI) [19–21] phase of the FireBird
mission, conducted in late 2016. Unlike ARGON, AVANTI con-
ducted all image processing, state estimation, andmaneuver planning
on board and achieved rendezvous to within tens of meters of a non-
cooperative ejected nanosatellite. While ARGON relied on prior
knowledge of the orbital states from NORAD two-line elements
(TLEs), AVANTI tested a new target identification and filter initial-
ization algorithm, which reduced reliance on prior ground-based
knowledge. Finally, AVANTI demonstrated navigation robustness
while coping with substantially more data outages due to sensor
blinding and thruster actuation constraints than anticipated. It is
worthwhile to note that, just like the majority of research studies
found in the literature, these two on-orbit experiments involved only
binary formations in LEO and required extensive maneuver planning
and actuation to effectively handle the observability constraints of
angles-only navigation.
In response to the many challenges posed by angles-only naviga-

tion, Sullivan et al. [13] and Sullivan and D’Amico [22] developed a
maneuver-free approach using the unscented Kalman filter (UKF)
that was verified for applications in near-circular LEO and highly
elliptical orbit (HEO). The method proposed in those works uses
the relative orbital element (ROE) parameterization of the dynamics
for several key strengths. First, the weak observability is decoupled
into a single state element that well-approximates the range. Second,
the filter state propagation is streamlined by using an efficient and
accurate linear state transitionmatrix developed byKoenig et al. [23],
which captures secular and long-period effects of the J2 perturbation.
And third, the dynamical observability is improved by exploiting
nonlinearities relating mean to osculating ROEs (and then to bearing
angles) in theUKFmeasurementmodel. These nonlinearities capture
separation-dependent features of the relative motion that disambig-
uate the weakly observable range. The net result is a filtering meth-
odology that accurately converges to an estimate of the full relative
motion state without requiring orbital maneuvers. Still, that work left
open several research avenues to be pursued, including the possibility
for a more accurate estimation approach using numerical dynamics
propagation, inclusion of simplified maneuver strategies, estimating
additional useful parameters including the absolute orbit of the
observer, applications involving multiple targets and/or observers,
and more rigorous Monte Carlo testing.
This paper builds upon [13,22] and the legacy of the ARGON and

AVANTI flight experiments by combining new breakthroughs in
algorithmdesign and implementationwith the development of a novel
on-orbit formation-flying experiment using angles-only navigation. In
particular, this work provides the following contributions to the state-
of-the-art. First, several key improvements to the existing navigation
framework are developed in order to enable new applications, and to
provide greater performance and strategic design flexibility to future
mission planners. In particular, the method of dynamics modeling is
now more deeply treated as a design parameter wherein potential
observability, accuracy, robustness, and efficiency can be traded off
for the intended application by considering both linear and nonlinear
state propagation in the filter. In a similar way, the success of the
“maneuver-free” sequential filter design previously presented in [22]
shows that orbital maneuvering is no longer a strict requirement for
navigation convergence. Instead, simple single-impulse maneuvering
schemes, as opposed to the complex observability-optimizing control
algorithms often presented to enable angles-only navigation [14–16],
can be used as ameans of improving estimation convergence time and
accuracy;maneuvering is nowa strategic design parameter, rather than

a rigid requirement for navigation stability. As a means of extending
the filter efficacy in myriad applications, this work rigorously assess
the impact of two complementary strategies, namely, process noise
adaptation and state augmentation. In the former, the bearing angle
measurement residuals are used to vary the filter tuning in real-time
for improved performance during high-uncertainty or anomalous
events. The latter enables the filter to estimate additional parameters
that are useful to the particular scenario, such as sensor biases for a
poorly calibrated camera, ballistic properties for an unknown target
object, and theobserver absolute orbit. State augmentation is also used
to expand the maneuver-free angles-only estimator application from
binary observer-target formations to scenarios with multiple targets
and/or cooperative observers. Rigorous algorithm verification via
Monte Carlo simulation allows filter design trades to be weighed
against the requirements of the mission developer.
Second, a full systems engineering process is conducted to

design a comprehensive angles-only navigation flight experiment,
which reflects these new changes to the angles-only estimation
paradigm. The result is the Starling Formation-flying Optical eXperi-
ment (StarFOX), a navigation payload and series of tests designed
to advance the technology readiness of swarm relative navigation
for future deep space applications. The experiment will be hosted
on the NASA Starling-1 formation [24] consisting of four satellites
launched into LEO in 2022. StarFOX will provide valuable on-orbit
experience for the first ever demonstration of adaptive angles-only
nonlinear estimation involving multiple observer and target satellites
in both maneuver-free and maneuvering scenarios.
Following this introduction, Sec. II is devoted to modeling prelimi-

naries that focus on the relative orbital dynamics, the angles-only
measurement model, and high-fidelity orbit propagation. Section III
provides adetailed discussion of the angles-only navigation algorithms
and simulation results for the sequential relative orbit estimation
strategy. The application of these relative navigation strategies in an
on-orbit demonstration is highlighted in Sec. IV with the introduction
of StarFOX and specific hardware-in-the-loop simulation results.
Finally, Sec. Voffers lessons learned, conclusions, and ways forward
with open research questions.

II. Modeling Preliminaries

As a precursor to the development of the angles-only navigation
framework, a few key preliminaries must first be discussed. In par-
ticular, the following sectionwill highlight two of themain ingredients
for any state estimator: the dynamics andmeasurementmodels. This is
then followed by a brief description of the high-fidelity orbit propa-
gation utility used in this work and a summary of the simulation
verification pipeline that will show up in several subsequent sections.

A. Relative Orbital Dynamics Models

This section provides preliminary fundamentals for modeling
the relative motion dynamics between multiple space objects. Rather
than providing an exhaustive discussion, the insight provided here
is a high-level overview of key concepts that will be tailored to the
application of angles-only relative navigation. For a comprehensive
resource on spacecraft relative motion dynamics models, the work of
Sullivan et al. [25] is recommended. In the context of relative orbital
motion, the dynamics model parameterizes the trajectory of an orbit-
ing space object with respect to a reference orbit. The reference orbit
may describe the physical orbit of another space object or some other
meaningful virtual orbit. For this work, the observer spacecraft orbit
is treated as the reference about which the target space object motion
is described. Irrespective of the dynamical state, the relative orbital
mechanics are generally described by a system of nonlinear differ-
ential equations:

_x�t� � f�x�t�; u�t�;p�t�; t� �w�t� (1)

where x�t� ∈ Rn is the relative motion state, u�t� ∈ Rm is the control
input vector applied by either the observer or the target,p�t� is a vector
of dynamical parameters (e.g., absolute orbit state, force-modeling
parameters, etc.), and w�t� ∈ Rn ∼N �0; Q� is the additive process
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noise vector with symmetric positive semidefinite covariance matrix
Q ∈ Sn×n� . The nonlinear equations in Eq. (1)may be linearized about

the reference state and control input to produce the linear dynamical
state equations:

_x�t� � A�t�x�t� � B�t�u�t� �w�t� (2)

In the above, A�t� ∈ Rn×n denotes the time-variant plant matrix,
which captures the unforced dynamics. Instead, the time-variant input
sensitivity matrix, B�t� ∈ Rn×m, captures the forced dynamics due to
u�t�. In this linearized system, A�t� and B�t� are simply the Jacobian
matrices of the vector-valued function f with respect to x�t� and u�t�,
respectively. In general, the nonlinear dynamicsmodel in Eq. (1)must
be solved using numerical integration. Instead, it is often possible to
find closed-form solutions to the model in Eq. (2) that propagate the
state from time tj to time tk as

x�tk� � Φk;jx�tj� �
Z

tk

tj

Φk;τ�B�τ�u�τ� �w�τ�� dτ (3)

The zero-input response and zero-state response are accounted for in
terms of the state transitionmatrix (STM),Φ ∈ Rn×n, via propagation
and convolutionwith the control inputmatrix, respectively. The choice
of dynamics model [i.e., Eq. (1) or Eq. (2)] and solution methodology
[numerical integration or linear propagation via Eq. (3)] are major
design choices for the estimation architecture and are largely driven by
the selection of the dynamical state representation. In the majority of
research studies in the literature, the state is parameterized using either
translational state components or using ROEs.

1. Translational State Elements

The relative translational state is made up of the relative position

δrR � �x; y; z� and relative velocity δ _rR � � _x; _y; _z� of the target
defined in the rotating reference frame R centered on the observer.
The R frame is often denoted as the local-vertical/local-horizontal
(LVLH)or radial/along-track/cross-track (RTN) frame. It is composed

of the orthogonal basis vectors R̂ directed along the observer absolute

position vector, N̂ in the direction of the observer orbital angular

momentum vector, and T̂ � N̂ × R̂, which completes the right-
handed triad. The evolution of this relative state is given by a direct
application of Newton’s law of gravitation, resulting in the fundamen-
tal relative orbital differential equations [26]:

δ�rR � −μ
�

rR � δrR

krR � δrRk32
−

rR

krRk32

�
� δdR − : : :

: : : − I _ωR × δrR − 2IωR × δ_rR − IωR × IωR × δrR (4)

Here, r and IωR are theposition andR-frame angular velocity vectors
of the observer with respect to an Earth-centered inertial frame (I ),
and

δdR ≜ dR
t − dR

o � �δdR; δdT; δdN�T (5)

is the R-frame differential acceleration vector, which accounts for
all control inputs and perturbations affecting the spacecraft motion.
Note that the time derivatives in Eq. (5) are taken in frameR.
Hereafter, subscripts t and o refer to the target and observer space-

craft, respectively. It is important to note that, even in the Keplerian

two-body orbital motion scenario (i.e., δdR � 0), no exact closed-
form solutions exist for Eq. (4). Instead, by invoking the assumption
that the relative separation is small with respect to the observer
absolute orbit radius, the differential gravity terms on the right side
of Eq. (4) can be linearized. The resulting equations of motion are
known as the Lawden or Tschauner–Hempel equations [27,28].
Although several approaches exist for solving these equations, the
STM developed by Yamanaka and Ankersen [29] is considered the
state-of-the-artmodel, and is proposed for onboard implementation in
the Proba-3 mission [30]. If the additional assumption of a circular

reference orbit is enacted, the linearized equations reduce further
to the well-known Hill–Clohessy–Wiltshire (HCW) equations [31],
for which there exists a simple STM solution. Even though this model
has strong flight heritage dating back to the Apollo era, it is largely
hampered by a limited range of applicability due to linearization,
preclusion of perturbations in themodel, and the fast time-variation of
the state elements making simple deterministic guidance and control
strategies difficult to devise.

2. Relative Orbital Elements

As an alternative state, the ROEs used in this paper are made up
of combinations of Keplerian orbital elements (OEs) of the observer
and target spacecraft. Many options are available for the definition of
this OE state, including singular elements [32], quasi-nonsingular
elements [33], and nonsingular ([34] p. 25) elements. For this paper,
the quasi-nonsingular vector

œ � �a; ex; ey; i;Ω; u�T (6)

constitutes the absolute OE vector of a spacecraft, where a is the
semimajor axis, ex and ey are the eccentricity vector components, i is
the orbit inclination, Ω is the right ascension of the ascending node
(RAAN), and u is the mean argument of latitude. These OEs are only
singular for strictly equatorial orbits, where Ω is undefined. When
talking about OEs and ROEs, a distinction must be made between
osculating andmean elements; the former describe the instantaneous
perturbed trajectory, whereas the latter describe the trajectory subject
to an averaged perturbation effect. To avoid confusion, the notatione�⋅�will be used to denote an osculating quantity. The evolution of the
OE state comes from the Gauss variational equations (GVEs), where
the time variation of the osculating OEs due to an acceleration vector
described in the local frame of the spacecraft is given by

d ~œ
dt

� G� ~œ�dR (7)

with G ∈ R6×3 denoting the well-documented GVE matrix ([34]
pp. 34–36). This set of absolute OE variational equations can be
used now to derive a set of variational equations for the osculating
ROEs, δ ~œ. First, let the ROEs be defined functionally as some linear
or nonlinear combination of absolute OEs δ ~œ � g� ~œo; ~œt�. Then,
the time evolution of the ROEs simply comes from differentiating the
vector-valued function g with respect to time and substituting the
individual contributions from the GVEs for each spacecraft, yielding

dδ ~œ
dt

�
�
∂g
∂ ~œo

G� ~œo� �
∂g
∂ ~œt

G� ~œt�RtRR

�
dR
o � : : :

: : : �
�
∂g
∂ ~œt

G� ~œt�RtRR

�
δdR ≜ f�δ ~œ; ~œo; u;p; t� (8)

The rotation matrix RtRR transforms dR
t from R to the targets

RTN frame,Rt, in order to apply the GVEs. Notice from Eq. (8) that
the total ROE evolution is intuitively composed of variations due to
the perturbation of the reference orbit and variations due to differential
accelerations in the observer–target system.AlthoughEqs. (4) and (8)
fundamentally describe the same underlying physics, the effective-
ness of the ROE state is evident when considering again theKeplerian
two-body example. Unlike Eq. (4), the solution of Eq. (8) in this case
is trivial; for orbits of equal energy the ROEs are all constant.
Furthermore, under the effect of perturbations, the osculating ROEs
evolve slowly in time with respect to the reference orbital period
and can be decomposed into short-period (on the order of the orbital
period) oscillations, long-period (an order of magnitude larger
than the orbital period) oscillations, and secular variations. This slow
time variation allows larger time steps to be used when numerically
integrating the GVEs, effectively increasing propagation efficiency
for comparable modeling accuracy. Instead, averaging theory can be
applied to obtain the variational equations for the mean ROEs subject
to the secular perturbation effects. This method leads to tractable
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equations of motion that can be solved in closed-form, as demon-
strated by both Koenig et al. [23] for J2 and differential atmospheric
drag perturbations, andGuffanti et al. [35] andGuffanti andD’Amico
[36] for solar radiation pressure (SRP) and lunisolar third-body
perturbations. Within an angles-only navigation filter, these models
enable accurate and efficientmodeling of the environment in LEOand
GEO, respectively, and their combination is used to bridge the gap
between low- and high-altitude phases of HEO scenarios.
In general, the choice ofROE functiong is dependent on the orbital

scenario. For this paper, the ROEs are defined as the following
combination of quasi-nonsingular absolute OEs:

δœ�

0
BBBBBBBBB@

δa

δλ

δex

δey

δix

δiy

1
CCCCCCCCCA

�

0
BBBBBBBBB@

δa

δλ

kδek2cφ
kδek2sφ
kδik2cϑ
kδik2sϑ

1
CCCCCCCCCA

≜

0
BBBBBBBBB@

�at − ao�∕ao
ut − uo � �Ωt −Ωo�cio

ex;t − ex;o

ey;t − ey;o

it − io

�Ωt −Ωo�sio

1
CCCCCCCCCA

(9)

Specifically, δa is the relative semimajor axis, δλ is the relative mean
longitude, δe is the relative eccentricity vector, and δi is the relative
inclination vector. The notations c and s denote the cosine and sine of
the angle in the subscript. In the second form of the ROEs in Eq. (9),
the relative eccentricity and inclination vectors have been written in
polar form in terms of their magnitudes and phase angles, φ and ϑ,
respectively. The former angle represents the relative periapsis,
whereas the latter represents the relative ascending node. Just as with
the absoluteOEs defined in Eq. (6), this definition of theROEs is only
singular for strictly equatorial orbits, and is equally applicable to
osculating and mean elements.
This definition of mean quasi-nonsingular ROEs in particular has

an insightful geometric interpretation in near-circular orbits wherein
each element corresponds to distinct features of the relative trajectory
in the RTN frame. Specifically, δa and δλ capture mean offsets in
the radial and along-track directions, respectively; the magnitudes of
δe and δi correspond, respectively, to the magnitudes of the in-plane
(radial/along-track) oscillations and out-of-plane (cross-track) oscil-
lations; and their phase angles φ and ϑ dictate the orientation and
warping of the tilted ellipse in the radial/cross-track plane [13] (see
Fig. 1a). In the context of far-range angles-only navigation, δλ is a
strong approximation to theweakly observable range. D’Amico [33],
D’Amico andMontenbruck [37] used these features to formulate the
so-called relative eccentricity/inclination-vector separation guidance
laws, which are useful for establishing passively safe relative trajec-
tories in the presence of along-track position uncertainty. Koenig
and D’Amico later generalized the relative eccentricity/inclination-
vector separation approach from binary formations to arbitrarily-
sized swarms [38]. The near-circular orbit geometric interpretation
was extended to arbitrarily eccentric orbits by Sullivan and D’Amico
[22] with the introduction of a modified combination of the mean

quasi-nonsingular ROEs denoted by �δa; δλ�; δe�; δi�T. In addition
to the aforementioned geometric features, the new interpretation
superimposes oscillations in the radial and along-track directions
that are proportional to the observer orbit eccentricity eo. Figure 1b
shows the dimensionless RTN frame geometry, with components
proportional to eo shown in red.

B. Angles-Only Measurement Model

The angles-only measurement model describes the relationship
between the internal dynamical state used in the filter and the mea-
surements received by the VBS. As previously mentioned, this work
uses an internal state composed of the quasi-nonsingular ROEs
defined in Eq. (9), which is augmented to include additional param-
eters as described in Sec. III. The VBSmeasurements at each sample
time are a pair of synchronous bearing angles, denoted as the azimuth,
α, and the elevation, ϵ. These bearing angles can be interpreted in
several ways. From a purely geometric standpoint, the bearing angles
subtend a line-of-sight (LOS) vector in the observer’s VBS frame, V,

which points from the observer to the target. Instead, one might also
consider these angles as an analog for the image frame coordinates to
the target object pixel cluster. Figure 2 highlights the former inter-
pretation, where the V and R frames are shown, and the bearing
angles are defined with respect to the VBS-frame relative position

vector, δrV . Formally, the bearing angle measurement model is

written with respect to δrV as

y � h 0�δrV� �
�
α

ϵ

�
�

�
arcsin�δrVy ∕kδrVk2�
arctan�δrVx ∕δrVz �

�
(10)

Clearly, Eq. (10) is only one part of the complete measurement
model h. The algorithm for transforming from mean or osculating
ROEs to bearing angles is highlighted in Algorithm 1. There are two
particularly important components to this model that deserve atten-
tion. First, when using mean elements it is important to convert to
osculating elements if possible (see Algorithm 1, lines 4 and 5). This
ensures that the bearing angles, which live in an inherently “osculat-
ing” space, are matched to properly oscillating ROE trends. Schaub

a) RTN motion for near-circular orbits

b) RTN motion with terms proportional to eo in red

Fig. 1 Nondimensional RTN geometric interpretation of ROEs for a)
near-circular and b) eccentric orbits.

Fig. 2 Bearing angle geometry in the vision-based sensor frame, V.
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and Junkins [39] and Alfriend ([34] Appendix F) both provide an

analytical model for the mean-to-osculating transformation that is
linear with respect to J2, whereas more recent work by Gaias et al.
[40] has put forth additional transformations to account for the

remaining terms of the geopotential. Instead, there are limited
closed-formmodels for these transformations that capture the effects
of other perturbations; in these cases, the transformation is simply

identity. Second, in order to compute the relative position vector (or
LOS) vector, it is first necessary to transform the absolute OEs to
absolute inertial position and velocity components, as inAlgorithm1,

lines 4 and 5 or lines 7 and 8. This nonlinear transformation is
provided by Schaub and Junkins [39], and retains the curvature of
the trajectories inherently captured by the OE description. The meas-
urement model obviously contains several distinct sources of useful

nonlinearities that can be used to disambiguate theweakly observable
interspacecraft range [22]; a major motivation for using the UKF in
the sequential estimation approach stems from the desire to retain

these nonlinearities by forgoing Taylor series linearization of the
measurement and/or dynamics models.
As a last consideration in this discussion, notice from Algorithm 1

that knowledge of the absolute orbit and attitude of the observer is
required. One possible controlled attitude configuration is shown in

Fig. 2. In this orientation, theVBS camera boresight, ẑV , points along
the anti-flight direction, and the ŷV vector is aligned normal to the
plane of the observer’s orbit.

C. High-Fidelity Numerical Simulation

The numerical propagation of orbital states can be used to provide

a rigorous “ground truth”model against which to compare analytical
closed-form solutions. Although the computational simplicity of
closed-form solutions might be desirable for onboard implementa-

tion in an estimator, numerical integration of the equations of motion
can alternatively be used for state propagation when increased accu-
racy is required. Accordingly, this section highlights some of the

main principles of numerical orbit trajectorymodelingwith the intent
of developing a ground truth to evaluate the aforementioned analyti-
cal models, as well as to motivate numerical propagation for use in

angles-only navigation.
The trajectories of Earth-orbiting satellites are influenced by

multiple perturbing accelerations of various magnitudes. Monten-
bruck and Gill [41] provide an extensive mathematical description of
these perturbations with a keen focus on modeling for high-fidelity

orbit propagation. With the particular propagator used in this paper,
the accelerations due to nonspherical gravitation are accounted for
using a high-order/degree (up to 120 × 120) spherical expansion of
the GGM01S Grace Gravity Model [1] for the Earth geopotential.

Lunisolar third-body point-mass gravitation effects are simulated
using analytic ephemeris models for the sun and moon. The accel-

eration due to atmospheric drag is treated with a standard V2 law,
using the NRLMSISE-00 [42] atmospheric density model. Finally,

SRP perturbations use a cannonball model assuming conical Earth
shadowing.

It is clear from the discussion above that the satellite orbital
trajectories can be modeled using a variety of state descriptions. Just
as in the case of closed-form solutions, the selection of state repre-
sentation and corresponding equations of motion plays an important
role in numerical propagation efficacy.While the equations ofmotion
in translational elements (the fundamental orbital differential equa-
tions, FODEs) or OEs (the GVEs) describe the same underlying
physics, the quality of performance in their numerical integration
can vary substantially because of the intrinsic difference between the
state representations. For example, the inertial translational elements
are rapidly varying even with no applied perturbations, whereas the
OEs are constant for no perturbations and slowly time-varying when
perturbed. It stands to reason then that, in order to obtain equivalent
propagation precision, numerically integrating the translational
element equations of motion would require a smaller time step than
that used with the GVEs.
As evidence for the GVE propagation efficiency, a numerical inte-

gration assessment has been conducted to study the performance of the
two classes of dynamics models as a function of integration step size.
Precise orbit determination products from the PRISMAmission [3] act
as the ground truth data by which the outputs of the numerical
propagators are evaluated. For the OE case, the absolute GVEs in
Eq. (7) are numerically integrated; for the translational element case,
the absolute FODEs are numerically integrated. In both cases, high-
fidelity models of Earth geopotential, atmospheric drag, SRP, and
lunisolar third-body perturbations are used (see Table 1). Using 200
evenly spaced initial condition sets from within the flight data, the
orbits are propagated with integration step size varied in the set
Δt ∈ f10; 30; 60; 120g s. The mean 3D root-mean-squared (RMS)
position propagation errors and 1-σ standard deviations are computed
from the 200 sample trajectories at each time step and shown in Fig. 3;
the standard deviations are captured by the shaded regions about the
solid mean error trends. It is important to note that similar trends to
those depicted are also found for the velocity propagation errors.
Clearly, numerically integrating the GVEs allows for superior propa-
gation accuracy while using a step size that is an order of magnitude
greater than the FODE-based test. In the angles-only navigation sce-
nario, where measurements come at the sparse rate of 1–10 min, a
larger integration step size means fewer overall calls to the state update
algorithm and a corresponding increase in filter propagation efficiency.

D. Simulation-Based Algorithm Verification

To verify the navigation algorithms put forth in the following
sections, a simulation pipeline is established that makes use of the
aforementioned full-force orbit propagator to compute the true trajec-
tories of the observer and target satellites. The truth-side data come
from numerically integrating the GVEs subject to the perturbations
outlined in the top half of Table 1. The resulting trajectories are then
used to generate measurements for the algorithms in one of twoways.
First, they are used as inputs into a synthetic measurement emulation
model that delivers bearing angles, observer absolute orbit, and
observer absolute attitude inputs that have been corrupted with noise
that is consistentwith commercially available sensors.Table 2 captures
thevarious noise sources that have been injected into the simulation. In
particular, the observer orbit knowledge errors are conservative values
for a position, velocity, and time (PVT) solution using the Global

Algorithm 1: Complete measurement model

1: function h �δœ;œo;
VRI �

2: œt from Eq. (9) using δœ and œo

3: if using mean elements then
4: rIo ←MEANTOOSC �œo�
5: rIt ←MEANTOOSC �œt�
6: else
7: rIo ← œo

8: rIt ← œt

9: end if
10: δrV ←

VRI �rIt − rIo �
11: �α; ϵ� ← δrV from Eq. (10)

12: RETURN �α; ϵ�
13: end function

Table 1 Orbit propagator and PRISMA flight product details

Propagator configuration

Integrator Runge–Kutta Dormand–Prince
Geopotential GRACE Gravity Model 01S 120 × 120

Atmospheric density NRLMSISE-00 Model
Solar radiation pressure Flat plate with conical Earth shadow
Third-body gravity Lunar and solar point masses
Lunisolar ephemerides Analytic

PRISMA flight data

Initial epoch March 17, 2011 00h:00m:00s

Duration 06 (h)
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NavigationSatellite System (GNSS); the attitude knowledge errors are
in line with commercially available attitude determination system

capability; and the bearing angle noise value is consistent with results
from several sensor benchtests. With regard to the latter parameter,
30 arcsec is on the order of one-third to one-half a pixel for several
candidate VBS. Note that timing errors/delays are not considered yet
in this work. Alternatively, the trajectories are used as inputs into a
hardware-in-the-loop optical testbed [43,44] in order to stimulate a
space-grade camera with dynamically rendered scenes of the observer
and the background starfield. The testbed, which will be discussed in
Sec. IV, delivers measurements of the bearing angles and the observ-
er’s absolute attitude to the angles-only navigation algorithms.
Accordingly, only the observer absolute orbit knowledge is generated
via simulation and corrupted with noise per Table 2.
Verification of the algorithms is conducted using scenarios that

are composed of a primary observer absolute orbit and target relative
motion configurations about that observer orbit. In this work, the
primary observer orbit is parameterized by a set of mean OEs, and

categorized as one of the following from Table 3: a low-altitude
(350 km) near-circular LEO (denoted LEO1), a near-circular sun-
synchronous LEO at 850 km altitude (denoted LEO2), an inclined
HEO (denotedHEO1), or a very near-equatorial geosynchronous orbit
(denoted GEO1). The motion of targets about the primary observer
orbit is instead parameterized using a set of mean ROEs. The GEO1
scenario is near-equatorial to allow the use of the quasi-nonsingular
OEs and ROEs defined previously. If operation in a strictly equatorial
orbit is necessary, the nonsingular OE and ROE states defined by
Alfriend ([34] p. 25) and Koenig et al. [23] can instead be applied.
For most of the test cases presented in this paper, Monte Carlo

simulations are conducted that vary the target ROEs uniformly to
generalize the testing over a range of reasonable formation configu-
rations. The lower and upper bounds, U lb and Uub, for the uniform
distribution that eachROE component is drawn from are shown in the
lower portion of Table 3. Unless specified otherwise, the number of
Monte Carlo samples is chosen as 600 to provide 95%confidence that
steady-state estimation errors are consistent to within 2% of the true
value for all simulation cases. Lastly, a nominal ROE configuration
(denoted RO1) is specified for tests that do not vary the relative
motion configuration. RO1 is considered a mid-range approach con-
figuration starting at 30 km separation with 500 m projected circular
motion in the radial/cross-track plane and a mean semimajor axis
offset that induces a drifting approach that brings the observer and
target closer at a rate of approximately 1.5 km per orbit.

III. Angles-Only Relative Navigation Algorithms

The objective of this section is to expand upon the algorithmic
features of the proposed angles-only navigation filter, and to provide

GV E

FODE

GV E

FODE

GV E

FODE

GV E

FODE

Fig. 3 Propagation performance based on choice of equations ofmotion for integration step sizes of 10 s (upper left), 30 s (upper right), 60 s (bottom left),
and 120 s (bottom right).

Table 2 Sources of noise injected during algorithm verification

Noise source 1-σ Unit

Observer absolute position,a σp 25 m

Observer absolute velocity,a σv 0.25 m/s

Observer boresight attitude 30 arcsec
Observer off-axis attitude 6 arcsec
�α; ϵ� measurements, σα and σϵ 30 arcsec

aDoubled for HEO and GEO test cases.

Table 3 Initial conditions for sequential algorithm verification scenarios (perigee altitude is denoted by hp)

Observer hp (km) ex ey i (deg) Ω (deg) u0 (deg)

LEO1: low altitude 350 −5.00 × 10−4 8.66 × 10−4 98.70 28.87 300.00

LEO2: sun-synch., LTAN 11 850 −5.00 × 10−4 8.66 × 10−4 98.70 28.87 300.00

HEO1: highly elliptical 850 −2.50 × 10−1 4.33 × 10−1 30.00 60.00 300.00

GEO1: geosynchronous 35,786 −5.00 × 10−4 8.66 × 10−4 1.00 60.00 300.00

Relative orbit (RO) aδa (m) aδλ (km) akδek2 (km) φ (deg) akδik2 (km) ϑ (deg)

RO1: midrange approach −150 −30 0.5 0 0.5 180

Monte Carlo: Ulb −150 −50 0 0 0 0

Monte Carlo: Uub 150 −5 1 360 1 360
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verification results that highlight the applicability and strengths of

the new approach. Although the UKF [45] (the foundation for this

estimation architecture) is no longer itself a novelty, the manner

by which it is applied to strategically suit the needs of angles-only

navigation is indeed a major contribution of this work. Key filter

design paradigms involving the choice between linear or nonlinear

dynamics modeling, the ability to adaptively tune process noise

statistics in real-time, and the flexibility to estimate additional param-

eters of utility will all be discussed in the following.

A. Unscented Kalman Filter Dynamics Modeling

1. Linear and Nonlinear State Propagation

When a new measurement set is received, the first step in the

general Kalman filtering architecture is to propagate the current

state and covariance estimates forward to the measurement time.

The explicit assumptionwithin this framework is that the state dynam-

ics are Gaussian, with the distributionmean capturing the current state

estimate and the distribution covariance capturing the current state

uncertainty.Although the state propagation for a nonlinear systemmay

proceed directly through the nonlinear dynamics, the uncertaintymust

be updated linearly to retain a Gaussian distribution. Rather than

computing a first-order Taylor series expansions of the dynamics

model, the UKF enables higher-order nonlinearities to be captured

by using a stochastic weighted linear regression [46].With this insight,

a navigation filter is designed that updates the state and covariance via

numerical integration of the nonlinear osculatingROEdynamics given

by the GVEs in Eq. (8). In conjunction with the nonlinear measure-

ment model, this filter class (denoted hereafter as the numerical filter)

mitigates the inherent observability problems in the angles-only

navigation scenario by retaining key higher-order dynamical system

features that potentially uniquely define the relative state trajectory. As

an alternative to using numerical integration within the estimator, this

work poses a second filtering class (denoted as the analytic filter) that

uses an STM to linearly propagate a mean ROE estimated state and

covariance.As explored in previouswork [22], thismethod still retains

some observability-improving nonlinear features that are exploited

through the measurement relationship between mean ROEs and the

bearing angles. The choice between a numerical or an analytic filter

implementation is a strategic design tradeoff, which is quantified in

the subsequent sections. Figure 4 graphically compares the two filter

variants with a sampling-based example, where X denotes the state

“sigma points” that are propagated through the nonlinear dynamics in
the UKF and used to compute an updated empirical state covariance.

2. Effect of Orbital Perturbations

The effectiveness of either the analytic or numerical filter is driven
by its ability to properly fuse the dynamical evolution of the estima-
tion state with measured trends of the bearing angles. Because this
work is intended to generalize the applicability of angles-only nav-
igation to all relevant Earth orbit regimes, it is essential to capture the
dominating perturbation effects that drive substantial variation in the
ROEs over time. For the analytic filter variant, this capability hinges
on the availability of STM solutions that account for perturbations in
closed form. As previously mentioned, such models are formulated
for the ROEs of Eq. (9) by Koenig et al. [23], Guffanti et al. [35], and
Guffanti and D’Amico [36]. Instead, for the numerical filter variant,
the same high-fidelity force modeling that was discussed in Sec. II
can be used in the state propagation machinery for the estimator. It is
important to note, however, that modeling of nonconservative per-
turbations like atmospheric drag and SRP requires that parameters
related to the ballistic properties of the constituent satellites be known
or estimated in both the linear and nonlinear models. For the non-
linear models, the ballistic properties are often accounted for through
the drag and SRP ballistic coefficients. In the relativemotion context,
the differential ballistic coefficient is the primary parameter of inter-
est for nonconservative perturbation effects and it is defined as

ΔB ≜
Bt − Bo

Bo

where B ≜ C
A

m
(11)

Here, C can refer either to the drag or reflectivity coefficient of
the satellite, depending on whether drag or SRP is considered, and
A∕m is the area-to-mass ratio. The aforementioned linear dynamics
models provide the ability to capture nonconservative perturbations
either in terms of these same differential ballistic coefficients, or in a
“model-free” sense by augmenting the dynamical state with the time
rate of change of a subset of ROEs to capture the empirical average
effect of the perturbation.
To depict the effect of perturbations on theROE trajectory, a simple

numerical simulation of theGVEs is conducted using the high-fidelity
propagator described previously. The outputs of this qualitative study
illustrate the secular, long-periodic, and short-periodic osculating
ROE trends induced by the dominant Earth oblateness (J2) perturba-
tion in LEO and SRP in GEO. Although this represents only a subset
of the perturbations that can be modeled in both the analytic and
numerical filter versions, these effects are generally most dominant
and effectively exemplify the types of variations expected. Further-
more, the results of these numerical simulations confirm the trends
analytically predicted by Koenig et al. [23], Guffanti et al. [35], and
Guffanti and D’Amico [36]. As shown in Fig. 5a, J2 causes a drift
in δλ and a circular precession of the relative eccentricity vector δe.
In addition to these secular and long-periodic variations, the osculat-
ing ROEs display short-period oscillations with amplitudes that grow
with increasing interspacecraft separation (i.e., increasing jδλj). Note
that the effects of J2 on δi are not shown in this figure. In GEO
scenarios, the effect of SRP on the observer–target system is largely
driven by their difference in ballistic coefficients. Figure 5b highlights
the ROE evolutions due to SRP for a ΔB of 20% and 80%. In
particular, drift and short-periodic oscillations in δλ are accompanied
by short-periodic oscillations in δa and a long-periodic circular
precession of δe. The magnitude of each of these effects scales with
ΔB. SRP does not generally produce substantial variation in δi.
The treatment of filter dynamics modeling as a strategic design

parameter is now illustrated with a comparative case study. Both
the analytic and numerical filter are implemented for the GEO1

RO1 configuration highlighted in Table 3, and the impact of SRP is
considered by accounting for or omitting it from the “onboard”
modeling. In the analytic filters, the STMdeveloped byGuffanti et al.
[35] is used to capture the mean perturbation trends; in the numerical
filters, a flat platemodel with analytic sun ephemerides and canonical
Earth shadowing is implemented to account for the osculating

Fig. 4 Comparison of Gaussian propagation methods. The leftmost
subfigure illustrates a pure sampling-based strategy similar to Monte
Carlo analysis. The central illustration shows the propagation of the

mean and covariance through a linear transformation. The rightmost
subfigure depicts the sigma point propagation and ensuring notional
mean and covariance computation from their updated distribution.
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perturbation effects. In each case, the filter is given a modest initial-
ization error of approximately 15% for each ROE, and receives mea-
surements at an interval of 120 s. When accounting for SRP, it is
assumed that the true differential ballistic coefficient of 80% is known
exactly. Resulting error plots are shown in Fig. 6a for the analytic filter,
and Fig. 6b for the numerical filter. Note that only the relative mean
longitude error is shown, because it is well established that the error in
all other nonzero ROE components scales with this component as a
result of the observability decoupling [12,22]. The test results here
strongly indicate the necessity of modeling the SRP perturbation for
filter accuracy. Both filter variants display a large but convergent
steady-state error and covariance in the case where SRP is omitted.
The convergence to a largely biased estimate is a strong indicator of
dynamicsmismodeling in the filter leading tonewmeasurements being
associated to improper estimates of range. Instead, including SRP in
the filter dynamicsmodel is shown to stabilize the filter to an error well
within 1%. Interestingly, because the mean dynamics model in the
analytic filter does not immediately account for the short-period oscil-
lations seen in aδλ (as seen in Fig. 5b), the estimation error in Fig. 6a is
oscillatory about amean of approximately 2.3 km. The numerical filter
does not display this oscillatory response because it is integrating the
osculating equations of motion.

3. Monte Carlo Testing of Sensitivity to Observer Orbit Knowledge

The filter performance benefits from using numerical integration
for the state propagation do not come for free. In fact, there are two
main concerns when using the numerical filter. First, nonlinear
propagation of the equations of motion for even a low-fidelity force
model is generally at least an order of magnitude more computation-
ally intensive than propagating a linear dynamics model [25]. This

can be particularly problematic within the UKF framework, where
each sigma point must be propagated through the dynamics inde-
pendently. However, as seen in the results of Fig. 3, integrating the
GVEs allows for large integration time steps during the propagation
process. Accordingly, the concern of inefficient filter dynamics mod-
eling is largely allayed by working in the ROE framework.
The second concern with using the numerical filter variant stems

from the reliance upon observer orbit information, which may have
large errors. Propagation of the relative motion dynamics always
requires some knowledge of the absolute reference orbit (in this case,
the observer). This can be as minimal as knowing only the reference
orbit mean motion for the case of strictly Keplerian orbits, or as
complex as requiring the complete orbital state as well as ballistic
properties. Without providing a metric for the uncertainty in these
essential parameters (e.g., as in a consider-covariance formulation),
the filter has limited means to correct the estimation trends to account
for large errors in the absolute orbit state. This can lead to reduced
filter performance in scenarios where the probabilistic description
of the observer orbit is not well-characterized. The performance
impacts due to this lack of process information can also be more or
less pronounced based on how the information is coupled to the main
filter state dynamics. In a nonlinear relative motion dynamics model,
the knowledge of the observer’s orbital parameters is tightly coupled
with the propagation accuracy of the relative state. Instead, in a linear
relative motion propagation method, by the very nature of linearizing
the equations of motion, the practical coupling of observer state
knowledge is reduced to a first-order effect.
To better understand the practical implications of this coupling of

relative motion propagation and observer absolute orbit knowledge,
two Monte Carlo series of 600 tests are conducted using both the
analytic and numerical filters in the LEO2 observer orbit case. The
numerical filter uses a 120 s time step for the internal integration of
theGVEs,with forcemodeling to include a 5 × 5Earth gravitymodel
and lunisolar third-body gravitation. The analytic filter instead prop-
agates a state ofmeanROEs subject to only J2 perturbations using the
model from Koenig et al. [23]. As in all simulation results presented
in this work, the error sources captured in Table 2 are used to corrupt
“true” orbit, attitude, and sensor measurements. However, for this

a) Analytic filter error and 3-  covariance bounds

b) Numerical filter error and 3-  covariance bounds

Fig. 6 Filter aδλ estimation error mean/covariance, excluding SRP
(red/tan) and including SRP (blue) for the GEO1 RO1 case.

b) Effects of SRP in GEO over 60 days. ΔB= 20%(dark) and
ΔB = 80%(light) are both shown

a) Effects of J2 in LEO over 30 days

Fig. 5 Mean (dashed) and osculating (solid) perturbed ROE trends

with initial ( ) and final conditions ( ).
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series of tests, the statistics of the observer orbit error distribution are
themselves sampled from a statistical distribution for each Monte
Carlo iteration. For example, the jth test in this Monte Carlo series
will include observer orbit position and velocity component errors
(Ep;v) that are sample from the zero-mean Gaussian distribution

Ep;v ∼N
�
0; σ�j�p;v

�
(12)

However, rather than σ�j�p;v being a constant (as specified in Table 2), it
is sampled from the Gaussian distribution

σ�j�p;v ∼N �μσp;v ;Σσp;v� (13)

Two separate Monte Carlo series are conducted, and are delineated
based on their values of μσp;v and Σσp;v as shown in Table 4. Addition-

ally, for each Monte Carlo iteration, the true ROE state defining the
relative motion is sampled from the uniform distribution provided in
Table 3. The filter is initialized at each iteration with approximately
25% error with respect to the true values. Results for these tests are
shown in Fig. 7, with the primary figure of merit being the percentage
error in the relative mean longitude. Note that the mean of the error
distributions is shown in solid lines, whereas the 1-σ empirical stan-
dard deviation bounds are shown shaded around the mean trend. For
additional realism, the filter does not receive angular measurements
during periods of eclipse (gray-shaded regions of the error plots).
TheMonteCarlo test results show a few interesting features related

to the filter sensitivity to observer absolute orbit knowledge. First
in the “moderate” observer error case (Fig. 7a), both the numerical
and analytic filters perform quite well with regard to percentage error
in the range analog, aδλ; the former reaches a final error distribution
of 0.9	 1.3%, whereas the latter converges to 1.7	 2.4% after

five orbits without orbital maneuvering. Note, however, that the
filter estimation is converged and stable after about three orbits. As
expected, the numerical filter generally outperforms the analytic filter
in both mean error and precision of convergence due to improved
nonlinear dynamics modeling. Instead for the “conservative” orbit
knowledge error case (Fig. 7b), the numerical filter fails to stabilize
to an accurate estimate of aδλ on average, with an error distribution
of 21.1	 6.4% after 18 orbits and no clear convergent trend. Note
that the numerical filter has a consistent tendency to overestimate

the relativemean longitude in the high-noise case. Unlike the numeri-
cal filter, the analytic variant displays a clear convergent trend,
reaching an error distribution of 4.7	 4.1% at the end of simulation.
The transient error phase is more pronounced and the precision
of convergence is generally larger as compared with the same filter
in the “moderate” case. Still the filter generally performs successfully
if provided sufficient (in this case, nearly a factor of fourmore) time to
converge. These results reveal a sort of duality in the observability-
constrained nonlinear filtering framework: high levels of noise in a
tightly coupled nonlinear model can actually prove more detrimental
to filter stability than neglecting observability-improving system
nonlinearities in favor of noise robustness with linearized models.
Within this trade space, these comparative results ultimately indicate
the interplay between time to convergence, relative state estimation
accuracy, stability, and robustness, which must be evaluated against
the accuracy in observer orbit that is expected for the particular
mission scenario.

B. Adaptive Process Noise Tuning

Now that it has been firmly established that the observability
constraints imposed by angles-only navigation require reasonable
state propagation accuracy for effective estimation performance, this
section highlights a method of supplementing the onboard dynamics
model using the filter process noise covariance. In particular, this
approach uses sequences of bearing angle measurement residuals to
inform how the underlying state uncertainty should be evolving. As a
result, the propagation of the formal state covariance is enhanced by
usingmeasurement information,which evolves under the true dynam-
ics, in caseswhere the filter employs a reduced-dynamics propagation
method.
This work primarily uses the method of covariance-matching for

adaptive process noise tuning that was introduced by Myers and
Tapley [47,48] for general orbit determination, and later expanded
upon for satellite formation-flying by Fraser [49]. A key trait of this
approach is the use of a sliding window of measurement residuals
whose empirical covariance is related to the process noise covariance
through the Kalman filter gain matrix. In terms of the STM and state
formal covariance matrix, Σ, the process noise covariance matrix at
time tk can be adaptively updated according to

Qk �
1

N

Xk−1
i�k−N

�Σiji −Φi;i−1Σi−1ji−1ΦT
i;i−1 � Δx

iΔxT
i � (14)

Here, N is the length of the sliding window, and the state residuals,
Δx

i , in terms of the measurement residual and Kalman gain, K, are

Δx
i � Ki�yi − h�xiji−1�� � KiΔ

y
i (15)

Note that a subscript iji − 1 indicates an estimate at time ti using
measurements up to time ti−1. Following the covariance update, two
additional steps are taken to complete the process noise tuning. First, a
key advantage of the tuning law in Eq. (14) is that it does not require
invoking an assumption of steady-state filter performance and can
be equally applied during transient phases of estimation; however, this

comes with the added complexity that Qk is not guaranteed to be
positive semidefinite (PSD), and is therefore not immediately valid as
a covariance matrix. Accordingly, this work draws from the body of
work on least-squares covariance adjustment problems (LSCAPs)
[50] to formulate an optimal transformation of the process noise
matrix estimate as

Table 4 Monte Carlo sampling statistics for the observer orbit error

Error case μσp (m)
��������
Σσp

p
(m) μσv (m/s)

�������
Σσv

p
(m/s)

Moderate 15 3 0.15 0.03
Conservative 500 100 5 1

a) Estimation error for “moderate” observer error case

b) Estimation error for “conservative” observer error case

Fig. 7 Monte Carlo filter performance for absolute orbit knowledge
sensitivity.
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minimize �1∕2�kQ̂k −Qkk2F
subject to Q̂k ⪰ 0 (16)

Higham [51] proposes a solution to this LSCAP, which takes the form

Q̂k � �1∕2��B�H� (17)

whereH is a symmetric polar factor of B � �1∕2��Qk �QT
k �. Algo-

rithm 2 highlights the singular value decomposition approach used in
this paper to numerically compute the optimal covariance adjustment.
Second, because the inclusionof adaptive tuning intrinsically provides
another channel by which the estimator can diverge, a regularization
feature is included to ensure that the process noise covariance matrix
does not grow excessively large over short time spans. Algorithm 2
employs a heuristic regularization based on the spectral radius, ρ�Q�,
of the successive process noise covariance matrices:

ρ�Q̂k�
ρ�Q̂k−1�

≤ �ρ (18)

for some user-specified maximum allowable spectral radius ratio, �ρ.
A fitting illustration of the adaptive filter effectiveness in supple-

menting onboard dynamics modeling for improved estimation perfor-
mance comes in the HEO1 test case. Here, the observer and target are
in HEOs, traversing regions with high SRP influence (at high altitude)
and regions with high J2 influence (at lower altitudes). For this case
study, both the standard analytic and adaptive analytic filters are
employed using a linear dynamics model that only accounts for J2.
The performance of both filters is assessed inMonte Carlo simulation,
where the ROEs defining the formation geometry are sampled accord-
ing to Table 3. Additionally, for each Monte Carlo simulation, the
differential SRPballistic coefficient for the formation is sampled out of
a uniform distributionU�−100%; 100%�. Figure 8 depicts the estima-
tion errors and 1-σ empirical standard deviation bounds from the

simulation campaign. Compared with the standard filter, the adaptive
filter demonstrates better average convergence time (about 4 orbits vs 8
orbits), lower mean estimation error at steady state (within 1% vs 5%),
and tighter estimation error standard deviation (0.35% vs 1.10%). The
inclusion of adaptive process noise tuning increases the computational
runtime by approximately 8% compared with the non-adaptive time-
update step.
Other than acting to complement reduced-dynamics state propaga-

tion in the filter, adaptive process noise tuning has another compelling
outcome.Because theprocess noise statistics aremodified as a function
of measurement residual histories, the adaptive filter is more receptive
to new measurements and is expected to better handle anomalous
events. As an example of this filter receptiveness, consider the follow-
ing case: an observer is estimating the orbital state of a non-cooperative
target space object, and part way through the filter convergence phase,
the target executes an unknown orbitalmaneuver that changes its long-
term trajectory. Furthermore, due to visibility limitations and eclipses,
the filter is only able to receive measurements for approximately 30%
of the orbit. The filter performance for this demanding scenario in the
LEO2 RO1 case is shown in Fig. 9. Estimation error and uncertainty
bounds in the relative mean longitude ROE component are shown for
both the standard and adaptive forms of the analytic filter. As always,
periods of measurement outage are shown in the shaded gray regions.
Notice that, following the unknown targetmaneuver, the adaptive filter
covariance (shaded blue) displays a pronounced increase, whereas the
standard filter covariance increases only slightly due to the mismatch.
The large change in the adaptive filter arises because the estimator
has computed disproportionately erroneous measurement residuals,
and the adaptive tuning component uses those to increase process noise
covariance. In so doing, the filter trusts its onboard dynamics model
and state estimate less, and accordingly weights incoming measure-
ments more heavily. The result is a faster stabilization of the adaptive
filter estimate as compared with the standard filter. Whereas it takes
the adaptive filter only about four orbits to return convergence towithin
4.8	 1.6% of the true aδλ, the standard filter remains on a slow
convergent trend for the remaining seven simulated orbits. The final
steady-state error of the adaptive filter is reduced down towithin 0.8	
0.7% by the end of the simulated estimation window.

C. Estimating First-Order Gauss–Markov Processes

In addition to solving for the relative orbital state of target space
objects, the ability to estimate additional relevant parameters extends the
usefulness and robustness of the filter. As mentioned in prior sections,
the differential ballistic coefficient for SRP or drag is a parameter that is
required in either linear or nonlinear propagation models and is gen-
erally unknown at the start of non-cooperative operations. Furthermore,
the differential ballistic coefficient provides insight into the relative size
and attitude of the space object. Accordingly, a filter that can estimate
this quantity provides awealth of new information that improves overall
situational awareness and modeling capability. As another example of
additional relevant parameters, consider that angles-only navigation
relies on a calibrated optical sensor to detect variations in the relative
motion (at the subdegree level). The capability to estimate and calibrate
sensing biases enables more robust performance and greater ability

Algorithm 2: Adaptive process noise tuning

1: function UPDATEQ (x1:Nj1:N , Σ1:Nj1:N , Δ
y
1:N , Kk, �ρ)

2: Tune Qk from Eq. (14)

3: Least-Squares Covariance Adjustment:
4: B ← �1∕2��Qk �QT

k �
5: U, S, V�

← SVD�Qk�
6: H ← VSVT

7: Q̂k ← �1∕2��B�H�
8: Regularize Q̂k growth:

9: ρk ← EIG�Q̂k�
10: ρk−1 ← EIG�Q̂k−1�
11: if ρk∕ρk−1 ≥ �ρ then

12: Q̂k ← �ρ ρk−1
ρk

Q̂k

13: end if
14: RETURN Q̂k

15: end function

Fig. 8 Monte Carlo comparison of δλ estimation error for the standard
and adaptive analytic UKF in HEO1 scenario.

AUKF
UKF

MVR

Fig. 9 Estimation error and 3-σ covariance bounds with an unknown
target maneuver in LEO2 RO1.
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to detect and isolate sensing faults. This section highlights the method
by which these specific parameters can be captured in the filter through
state augmentation. It is important to note that this approach can
be generalized to myriad additional parameters, as was shown in
earlier work by Sullivan and D’Amico [13] for estimating empirical
accelerations.
The sensor biases and differential ballistic coefficient parameters

can be reasonably modeled as band-limited noise processes. Accord-
ingly, a first-order Gauss–Markov model [52] is used to capture the
evolution of such a parameter, here defined generically as β:

_β�t� � −
1

τ
β�t� ⇒ β�t� Δt� � β�t� exp

�
−
Δt
τ

�
(19)

The parameter τ is the autocorrelation time constant, which can
be tuned according to the expected variability in the parameter. For
a stationary bias (i.e., for an Ornstein–Uhlenbeck process), this time
constant is set to∞ to capture a random walk process. For a nonsta-
tionary parameter, the time constant is chosen to effectively sample
the variation over the estimation period.
Monte Carlo simulation results for the estimation of azimuth and

elevation angle biases are shown for the HEO1 RO1 case in Fig. 10.
Sensor biases are treated as stationary parameters (τ � ∞) and true

values are sampled from a normal distribution bα; bϵ ∼N �50; 25�
arcsec for each simulation. Note that these values for mean and
standard deviation correspond to approximately 2 and 1 pixels of a
representative VBS, respectively. The filter estimation state is aug-
mented to include both additive bias terms, yielding the new dynami-
cal system

x�t� � �δ�t�; bα; bϵ�T ∈ R8

_x�t� � �f�δ�t�; o�t�;p�t�; t�; 0; 0�T
y�t� � h�δ�t�; o�t�; VRI � � �bα; bϵ�T ∈ R2 (20)

The filter employedhere is the numericalUKFvariant (with unscented

transform parameters α � 10−3, β � 2, κ � 1) that models a 5 × 5
Earth gravitymodel, lunisolar gravitation, and SRP (with a differential
ballistic coefficient error of 5%), and is initialized with ROE error of
25% (relative to the true ROEs) and angle biases of 0 arcsec. The
results indicate that the azimuth angle bias is generally estimated to
high accuracy very quickly, with a strongly stable convergence to
within 2 arcsec (3-σ). Instead, the elevation bias angle shows a sub-
stantially slower convergence trend, with a larger uncertainty in the
steady-state error distribution.The estimation behavior for these biases
makes sense when recalling the measurement model: the azimuth
angle captures out-of-plane angular deviations with respect to the
observer’s orbit, whereas the elevation angle captures in-plane angular
deviations from the observer’s (anti-)along-track direction (see Fig. 2).
These angles are generally periodic over the orbital period, and, for the
case of the azimuth angle, centered on a mean angle of zero. Instead,
by definition, the elevation angle can have two sources of natural

nonzero mean angle: 1) a nonzero difference in semimajor axis
between observer and target, and 2) a large nonzero mean along-track
separation between observer and target. In the first case, there is
a rectilinear radial offset caused by the target being on a higher
or lower orbit; in the second case, the large along-track separation
results in a curvilinear radial offset due to the orbit curvature, which,
when perceived by the observer, manifests as an offset in elevation
angle. Because the elevation angle is inherently composed of these
two possible nonzero offsets, the estimation of any elevation angle
bias (i.e., due to sensing miscalibration) is more tightly coupled to the
estimation of the inter-object range and associated observability con-
straints. Still, the filter is able to estimate elevation angle bias towithin
approximately 5	 2 arcsec after about five orbits.
Now consider the casewhere the observer has very poor knowledge

of the target ballistic properties for either modeling the SRP force of
the atmospheric drag force. The estimation state can be augmented
to solve for such a set of parameters to improve the force modeling
accuracy in the filter dynamics model, yielding the dynamical system

x�t� � �δ�t�;ΔB�t��T ∈ R7

_x�t� �
�
f�δ�t�; o�t�;ΔB�t�;p�t�; t�;−

ΔB�t�
τ

�
T

y�t� � h�δ�t�; o�t�; VRI � ∈ R2 (21)

Note that the ballistic coefficients play no direct role in the measure-
ment modeling of the bearing angles, but are indeed coupled into the
internal dynamics model describing the relative motion. Monte Carlo
simulation results are shown in Figs. 11 and 12 for the LEO1 and
GEO1observer cases, respectively. The relative orbit initial conditions
for the 600 sampled trajectories are drawn from the distribution high-
lighted in Table 3. To emulate target attitude variations in eachMonte
Carlo case, the true differential ballistic coefficient is modeled as a
sinusoid with a mean drawn from U�−100%; 100%�, an amplitude
of 10%, and a frequency equal to the target mean motion. The filter
employed is a numericalUKFvariant thatmodels a5 × 5Earthgravity
field, lunisolar gravitation and nonconservative perturbations (drag or
SRP as functions of ballistic properties). The estimates ofΔB and the

Fig. 10 Monte Carlo mean (solid) and 1-σ (shaded) estimation error in
bearing angle bias for the HEO1 test case.

a) Estimation error in       with and without state augmentation

b) Estimation error in drag ΔB with state augmentation

Fig. 11 Relative orbit and differential drag ballistic coefficient mean
(solid) and 1-σ (shaded) estimation error trends for the LEO1 Monte
Carlo simulations.
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ROEs are initialized with 25% error relative to their true values, and τ
is chosen as 10 and 160min for the LEO andGEO cases, respectively,
to effectively sample the parameter over the orbital period. Note that
for the LEO1 case, onlyΔBdrag is considered; for theGEO1 case, only

ΔBsrp is considered. Figures 11a and 12a show the mean and 1-σ
estimation error trends for the relative mean longitude both including
andomitting (bynot conducting state augmentation) theΔB estimation.
In the omitting cases, holding the differential ballistic coefficient con-
stant at the erroneous initial conditions yields filter convergence to poor
accuracy on the order of 60–65% of the true state value. Instead if the
filter is allowed to estimate the differential ballistic coefficient, the
estimation of relative mean longitude consistently converges to within
approximately 1.4	 4.1% for the LEO1 case, and 0.7	 4.3% for the
GEO1 case. The estimation error trends for the differential ballistic
coefficient state in each of these two cases are shown in Figs. 11b and
12b, respectively. In both cases, the filter is able to estimate the drag or
SRPballistic properties towellwithin1%after an initial transient phase.
Because the ballistic coefficient provides insight into spacecraft area-to-
mass ratio, attitude variation, and material properties, an accurate
estimate from the filter provides new information to the observer to
be used for meeting mission requirements.

D. Absolute Orbit Determination and Multi-Agent Scenarios

Keeping with the theme of extending filter utility and flexibility,
this section describes two new features built into the angles-
only navigation framework. In the first, the filtering methodology is
extended and assessed for multi-agent scenarios involving several
targets and/or observers. In the second feature, state augmentation is
used to simultaneously estimate target orbital motion as well as the
absolute orbit of the observer. The approach to achieve these goals is
useful for formation and swarm sizes that are of practical scientific
and engineering impact. In particular, the capability to simultaneously
estimate the observer absolute state and the relative state of multiple
targets is a key enabling technology and a crucial design trade for
swarm missions away from Earth orbit (e.g., about Mars) where
absolute orbit information is sparse and inaccurate. Accordingly,

these navigation features are foundational components of the Star-
FOX experimental navigation payload discussed in Sec. IV.
For the problemof extending the filtering framework tomulti-agent

scenarios, a pragmatic approach is taken. For the case of multiple
targets viewed by a single observer, the estimation state of the filter is
simply composed of the ROEs for each of the targets under consid-
eration with respect to a common reference orbit or observer. Incom-
ing measurements consist of pairs of bearing angles for each visible
target, with associated measurement correspondences determined
based on the performance of themulti-hypothesis target identification
and tracking algorithm developed by Kruger and D’Amico [53].
For the multi-observer case where a single target is being estimated,
the assumption is that an intersatellite link between the two observers
exists for mutual sharing absolute orbit information and observer-
specific bearing angle measurements of the target; in this way, the
multiple observers estimate the target state in a decentralized manner.
Naturally, the general multi-observer and multi-target case is simply
a combination of these two approaches where observer formation
and decentralized estimation and communication topology can be
flexibly reconfigured based on the particular mission application. In
this general case, the dynamical system is

x�t� �
h
δœ�t��1�; · · · ; δœ�t��nt�

i
T
∈ R6nt

_x�t� �
h
f�δœ�1�;œo;p; t�; · · · ; f�δœ�nt�;œo;p; t�

i
T

y�t� �
h
z�1��1�; · · · ; z

�1�
�no�; · · · ; z

�nt�
�1� ; · · · ;z

�nt�
�no�

i
T
∈ R2nont (22)

where nt is the number of targets, no is the number of observers, and

z�j��i� is the evaluation of the measurement model h for the ith observer

viewing the jth target:

z�j��i� � h
�
δœ�j�;œ�i�; VRI

�i�
�

(23)

Although this new feature will be rigorously assessed in the sub-
sequent section, an insightful lesson canbe learned from the following
scenario. The LEO2 observer (denoted observer 1, O1) is attempting
to estimate the ROEs of a target at a separation of 100 km in the anti-
flight direction, with the true ROEs given by

δœt � �0;−100.0; 1.2; 0; 0.8; 0.8�T km

For approximately one orbit, O1 attempts to estimate this target
state while establishing a link with a secondary observer �O2� located
in a relative formation with the primary observer prescribed by RO1
in Table 3. Once the communication link is established, O1 and O2
exchange their respective measurements of the target, as well as their
absolute orbits, and compute an estimate of the targets orbit using
the numerical UKF variant receiving measurements every 120 s. The
resulting relative mean longitude error as estimated by O1 is shown in
Fig. 13. As soon as measurements are shared, the estimation error
quickly drops to within 0.20	 0.35% of the true value and remains
stable for the remainder of the coordinatedobservationphase.This result

a) Estimation error in       with and without state augmentation

b) Estimation error in SRP ΔB with state augmentation

Fig. 12 Relative orbit and differential SRP ballistic coefficient mean
(solid) and 1-σ (shaded) estimation error trends for the GEO1 Monte

Carlo simulations.

Fig. 13 Observer 1 filter aδλ estimation error and 3-σ covariance
bounds. Link with observer 2 occurs at red dashed line.
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makes intuitive sense when returning to the fundamental observability
constraints: by gathering simultaneous measurements from multiple
vantage points, the target is uniquely localized with respect to the
observers with accuracy approaching the noise floor of the sensors.
Lastly, the filtering methodology is extended to enable simulta-

neous estimation of target relative motion and the observer absolute
orbit. Recall from Eq. (8) that the ROE state is intrinsically evolving
as a function of both the absolute orbital state of the observer, as well
as due to the differential accelerations acting on the target–observer
pair. Rather than treating the observer state as known in this context,
a natural extension of the filter is to instead append the absolute OEs
of the observer to the estimation state. In this context, relative bearing
angle measurements are used to supplement a sparse (or completely
nonexistent) absolute orbit update from an external source like
GNSS, TLEs, or the Deep Space Network. The dynamical system
becomes

x�t� � �δœ�t�;œo�t��T ∈ R12

_x�t� �
h
f�δœ�t�;œo�t�;p�t�; t�; G�œo�dR

o

i
T

y�t� �
h
z�1��1�;œo;meas

i
T
∈ R8 (24)

Of course, requiring additional tightly coupled states to be estimated
necessitates a consideration of the system observability in order
to assess whether it is even feasible to do so. The work of Hu et al.
[54] demonstrates an observability analysis of two- and three-satellite
formations that share inertial bearing angle measurements of one
another (note that this is essentially equivalent to solving for the relative
orbit of a target and the absolute orbit of an observer). In particular, the
assessment is formulated using a Lie derivatives approach with the
inertial satellite dynamics parameterized in Cartesian coordinates. A
key lesson learned from that work was that the two-satellite formation
joint orbit determination is weakly unobservable, whereas the three-
satellite formation may enable weakly observable orbit determination
under certain configurations. Although this lack of general observ-
ability inmulti-satellite angles-only absolute orbit determinationmight
appear to pose a limitation for this paper, there are several reasons why
thisproblem is still relevant.A fundamental pillar of this research is that
the formulation of the estimation problem in ROE space intrinsically
improves the overall observability of the system by better exploiting
the connection between the measurement model and the nonlinear
curvilinear nature of orbitalmotion; accordingly, it stands to reason that
this same philosophy can improve the complete absolute/relative orbit
determination problem. Indeed, the observability constraint decouples
into an ambiguity between the observer mean argument of latitude
and the relative mean longitude. As a result, in scenarios where
good observer absolute orbit information is available or where good
relative orbit knowledge is available, the observability limitation is of
no practical significance; it is only in cases where both absolute and
relative orbit knowledge is poor that it can become an issue. However,
because theROEs are slowly evolving under the effect of perturbations
(and in fact constant in strictly Keplerian orbits), any possible estima-
tion divergence due to weak unobservability is expected to occur over
very large time spans as compared with the results presented in [54]
for the Cartesian states. As such, the simultaneous estimation of target
relative orbits and observer absolute orbit may still be practically
feasible with very sparse external absolute orbit updates to correct
the slow filter drift. Similarly, the use of measurement sharing between
multiple coordinated observers can immediately resolve the unobserv-
able ambiguity.

IV. StarFOX: The Starling Formation-Flying Optical
eXperiment

In light of the huge performance and flexibility improvements
that can be obtained in multi-agent scenarios, the navigation frame-
work described in Sec. III will be further assessed in the context of the
planned StarFOX experiment, which will be conducted as part of the
NASA Starling-1 mission [24]. The Starling-1 mission consists of a
swarm of four 6U CubeSats that will be launched into LEO in 2022.

The primary objectives of the mission are to demonstrate new tech-
nologies in ad-hocnetworking, cluster flight, andoptical navigation in
space. The latter objective is met by conducting the StarFOX experi-
ment, which builds on the contributions of previous experiments
including ARGON [18] and AVANTI [20].
Previous angles-only navigation experiments have been affected by

three common limitations: 1) reliance on accurate prior information to
initialize the navigation filter (e.g., use of NORAD TLEs for all
spacecraft), 2) reliance on frequent translational maneuvers to rectify
observability limitations, and 3) use of only two spacecraft. These
limitations prevent the use of angles-only techniques for navigation
systems in many mission applications of interest (e.g., science mis-
sions orbiting other planetary bodies or in deep space). Specifically,
reliance on accurate prior information precludes use of angles-only
navigation in orbit regimes where accurate reference metrology (e.g.,
GNSS or TLE) is unavailable. Reliance on maneuvers introduces a
complex coupling between the navigation and control systems and
reduces mission lifespans. Finally, use of more than two spacecraft
requires development of new algorithms that can provide accurate and
robust target identification across sequences of images from multiple
sensors.
The StarFOX experiment aims to remove all three of these limita-

tions, allowing a swarm of spacecraft to perform absolute and relative
navigationusingonlya single coarse absoluteorbit estimate andbearing
angles from one or more observers. This degree of generality would
enable use of angles-only navigation in a wide range of missions of
interest to the scientific community (e.g., performing planetary science
in Mars orbit) while adding minimal load to resources like the Deep
Space Network.

A. Scenario Definitions and Rationale

StarFOX includes an extensive experiment campaign that will
characterize the performance of angles-only navigation algorithms
in a wide range of scenarios. These scenarios include different for-
mation geometries, number of observers, frequency and accuracy of
absolute orbit estimates, and filtermodes (i.e., numerical vs analytical
dynamics, process noise handling, etc.). For the purposes of this
paper, two test cases have been selected to demonstrate the suitability
of the described filter architecture for use in challenging scenarios
with multiple targets and only a single absolute orbit estimate.
For these tests, the selected filter configuration is informed by the

findings in the previous section.Specifically, the filter estimates a state
consisting of its own osculating OEs (i.e., the observer absolute state)
and the osculating relative orbits of each target in the field of view.
Leveraging this state definition, the dynamics model numerically
integrates the GVEs using a Runge–Kutta fourth-order integrator.
The onboard dynamics model includes a 20 × 20 earth gravity field
and atmospheric drag based on the Harris–Priester atmospheric den-
sity model [55]. The computation cost associated with orbit propaga-
tion is minimized by adopting the procedure described in [9], which
exploits the triangular structure of thematrix square root to reduce the
number of calls to the orbit propagator by a factor of nearly two. The
filter uses adaptive process noise tuning to improve convergence
speed and robustness. Although the results in the previous section
show that parameters such as sensor biases and ballistic coefficients
can be estimated, these features are not included in these scenarios
because 1) the Starling-1 spacecraft are equipped with star trackers
that will be calibrated before launch, and 2) the formation is deployed
at an altitude of 500 km, where differential drag between nearly
identical spacecraft will be small.
The selected simulations are one day in duration and do not

include translational maneuvers for any spacecraft. The simulations
use identical formation geometries and differ only in the quality of
the initialization of the absolute orbit and use of the intersatellite
link to share measurements between multiple observers. The initial
osculating absolute orbit of the observer and relative orbits of the
three targets are provided in Table 5 where T1, T2, and T3 denote
targets 1, 2, and 3, respectively. These orbits were selected to provide
a baseline separation of 1 km in the plane perpendicular to the line of
sight using relative eccentricity/inclination vector separation [56],
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thereby minimizing the number of maneuvers required for station-

keeping. The distinct features of each test case are described in the

following.

1. Test Case 1: Single Observer

In the first simulation, a single observer estimates its own absolute
orbit and the relative orbits of three targets. Although it was shown by

Hu et al. that a single observer cannot completely resolve the state
[54], this scenario is still relevant if divergence of the state estimate

is slow. Specifically, the unobservable mode(s) can be corrected by

sparse updates of the observer’s absolute orbit (e.g., using the Deep
Space Network [57]). As such, the goal of this simulation is to show

that a single estimate of the absolute orbit of the observer is sufficient

to enable estimation of the complete state of the swarm with useful
accuracy for one day.
To demonstrate this capability, the filter is initialized with an

estimate of the absolute orbit of the observer with accuracy consistent

with GNSS or Deep Space Network [57] solutions (10 m, 1 cm∕s
1-σ errors in each position and velocity component, respectively).
The provided relative orbit estimates are subject to errors and 1-σ
uncertainties of 10 km in δλ and 100 m in all other ROEs, which are

representative of the expected accuracy of current batch relative orbit
determination algorithms [22]. The navigation algorithms are pro-

vided with measurements from the onboard camera every 120 s for
70% of each orbit. No measurement updates are performed in the

remaining 30% of each orbit to simulate outages due to eclipse,

blinding of the sensor, or mission operations constraints.

2. Test Case 2: Multiple Observers

In the second test case, two observers share bearing angle measure-
ments to estimate the complete state of the swarm from a coarse

initialization of the absolute and relative orbits. The second observer
is T3, which has a camera pointed in the anti-flight direction (allowing

it to see the primary observer, T1, and T2). The objectives of this test

are twofold. First, it will show that theweak local observability shown
by Hu et al. [54] for Keplerian orbits is sufficient to enable estimation

of the complete state of a swarm in the presence of representative

perturbations and errors. Second, it will demonstrate that angles-only
navigation algorithmsprovide sufficient navigation accuracy to enable

autonomous swarm operations around other planetary bodies with
minimal ground interaction.
To demonstrate these capabilities, the filter is provided with an

absolute orbit estimate and covariance that are consistent with TLE
errors (1 km error in semimajor axis, and several km of error in other

elements). As in test case 1, the provided relative orbit estimates are

subject to errors and 1-σ uncertainties of 10 km in δλ and 100m in all
other ROEs. The navigation algorithms are provided with measure-

ments from both observers every 120 s for 70% of the orbit and no
measurements are provided in the remaining 30% of the orbit.

B. Simulation Environment

To ensure that errors in inputs for StarFOX are as representative

as possible of errors encountered in flight, the previously described
simulation architecture is augmented to include a Nano Star Tracker

from Blue Canyon Technologies [58] in the loop. This is the same
sensor that will be used on the Starling-1 satellites. The augmented

simulation environment is illustrated in Fig. 14 and described in the

following.

First, the initial conditions (initial epoch, sample time, final epoch,
initial osculating orbits, and sensor attitude profile for each space-
craft) are specified by the user. Next, the ground truth states (orbit
and attitude) at each epoch are computed by propagating the orbits of
all four spacecraft using the high-fidelity numerical orbit propagator
described in Sec. II, which includes all significant perturbations
in LEO.
The ground truth data are used to generate real images of the target

spacecraft and background stellar/nonstellar objects at each measure-
ment epoch using the Space Rendezvous Laboratory’s optical stimu-
lator testbed [59]. This is accomplished in two steps. First, the optical
stimulator generates high-fidelity synthetic images of the target space-
craft andbackground stars at eachmeasurement epoch using3Dvector
graphics in OpenGL. Stellar objects and far-range targets are repre-
sented byGaussian point spread functions (PSF). Five randomPSFare
also added to each image to simulate unidentified objects in the field of
view, positioned according to a uniform distribution. These synthetic
images are converted to real images using the hardware component
of the optical stimulator, which is shown in Fig. 15. The optical
stimulator hardware includes the sensor under test, two lenses, and
an OLED microdisplay with a high dynamic-range, which stimulates
the sensor by rendering synthetic images of the space environment.
The lenses and display are movable to enable variable magnification

Table 5 Initial osculating orbital elements for HITL simulations

Observer ~a (km) ~ex ~ey ~i (deg) ~Ω (deg) ~u (deg)

6868 5.1 × 10−4 4.5 × 10−4 98.0 0.0 0.0

Relative orbit (RO) aeδa (km) aeδλ (km) a ~δex (km) aeδey (km) aeδix (km) aeδiy (km)

T1: Target 1 0 65.0 0 1.0 0 1.0
T2: Target 2 0 133.0 1.2 1.6 1.2 1.6
T3: Target 3 0 200.0 0 −1.0 0 −1.0

Fig. 14 Illustration of HITL simulation environment.

Fig. 15 CAD model of the optical stimulator.
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and the system is calibrated to ensure that the geometry and radiosity of

simulated imagery closely matches that of the space environment.
Specifically, angular residuals between desired and measured feature

locations are less than 10 arcsec. Design, calibration, and use of the
optical stimulator are fully described in [59].
Next, the image processing algorithm takes the time-tagged images

from the star tracker and computes the sensor attitude and bearing
angles to each target at each epoch. This is accomplished by a simple

four-stepprocedure. First, illuminatedpixel clusters are centroided and

converted to unit vectors in the sensor frame using a calibrated camera
model. Second, stars in the image are identified using the Pyramid

algorithm [60]. Third, the identified stars and corresponding pointing
vectors are used to compute the sensor attitude. Finally, bearing angle

measurements to each target are assigned using the Spacecraft Angles-

only MUlti-target-tracking Software (SAMUS) algorithm. SAMUS
applies principles ofmulti-hypothesis tracking, using a combination of

state information provided by the navigation filter and the kinematics
of target trajectories (i.e., the geometric features of Figs. 1a and 1b)

observed across previous images to robustly distinguish and assign
measurements to multiple targets. The details of SAMUS and the

image processing algorithm are described in [53].
Finally, the sequential filter uses the provided initial state estimate

and covariance and the bearing angle measurements from image

processing (and the intersatellite link if provided) to compute esti-
mates of the absolute and relative orbits of the swarm and associated
uncertainties at each epoch. It is assumed that the measurement
correspondence problem for measurements received over the inter-
satellite link (i.e., determination ofwhich bearing anglemeasurement
from the intersatellite link corresponds to each target seen by the
observer) is solved.Work is underway to generalize these algorithms
to solve this problem for the flight experiment.

C. Results

1. Image Processing

The performance of the image processing algorithm in regard to
multi-target measurement assignment is described using the tradi-
tional metrics of precision, recall, and accuracy. Precision quantifies
assignment robustness and the number of false-positive assignments;
recall quantifies assignment frequency and the number of false-neg-
ative assignments; and accuracy treats overall assignment perfor-
mance. Figure 16 presents an example output of image processing,
displaying the classifications of detected objects. Unknown objects
are those added by the optical stimulator to emulate unidentified
stellar or nonstellar objects.
In test case 1, SAMUS produces a precision of 99.93%, recall of

97.25%, and accuracy of 99.45% after classifying a total of 10,375
centroided objects. The single false positive results in a maximum
bearing angle assignment error of 98 arcsec. This error is caused by the
temporary overlap of a target pixel cluster with a star pixel cluster,
leading to an inaccurate centroid location. In test case 2, SAMUS
produces a precision of 99.87%, recall of 97.25%, and accuracy of
99.44% over 10,375 centroided objects. An additional false positive is
observed at the beginning of the simulation due to large initial uncer-
tainties in the estimated state, which creates similarly large uncertain-
ties in the predicted bearing angle measurements. Multiple bearing
angles can then be reasonable candidates for a target measurement and
may result in an incorrect assignment. In the case of large initial
covariances, SAMUS may instead choose to track targets using kin-
ematic means, without using filter state information. This causes a
maximum bearing angle error of 129 arcsec with two false positives in
total. Overall, however, image processing produces highly accurate
outputs for multi-target measurement assignment. The correct bearing
angles are passed to the filter, and consequently, the filter state effec-
tively aids assignment in new images.

2. Test Case 1: Single Observer

The estimation errors and uncertainties for the relative orbits in test
case 1 are shown in Fig. 17. It can be seen that the filter converges to
errors of less than 200m inaδλ (<0.4%) and less than 10m in all other
ROEs within a few orbits. The steady-state range uncertainty for all
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Fig. 16 Test case 1 initial input image and object classifications after
processing by SAMUS.

Fig. 17 Relative orbit estimation error and formal covariance for T1, T2, and T3 in test case 1 with measurement blackout periods indicated in gray.
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targets is 1 km (<1.5%). These results are consistent with the filter
performance shown in Sec. III.
With this in mind, consider the absolute orbit estimation error and

uncertainty shown in Fig. 18. This figure includes results for simulations
with (blue) and without (red) measurement updates applied to the
absolute orbit to provide a quantitative metric of the efficacy of using
anglesmeasurements for absoluteorbit estimationwith a singleobserver.
The errors are plotted as ROEs of the estimated state with respect to the
ground truth state to provide a simple geometric interpretation of their
meaning. That is, aδa represents the error in semimajor axis, aδλ
captures the error in the mean argument of latitude, aδex and aδey
capture errors in the eccentricity vector estimate,aδix represents errors in
the inclination estimate, and aδiy represents errors in the RAAN esti-

mate. The corresponding uncertainties in ROE space are computed by
applying an unscented transform to the absolute orbit covariancematrix.
It is clear fromFig. 18 that withoutmeasurement updates applied to

the absolute orbit, the uncertainty in the orbit semimajor axis grows by
several hundred meters over one day. As a result of the coupling
between orbital energy and orbital phasing, this divergence in semi-
major axis leads to rapidly growing uncertainty and errors in themean
argument of latitude. On the other hand, when measurement updates
are applied to the absolute orbit, the uncertainty in the semimajor
axis is bounded to about 100m, which is consistent with the behavior
of the error. This result, in turn, allows the error in the mean argument
of latitude to be bounded to a few hundred meters. The measurement
updates also reduce the growth of errors in the eccentricity and
inclination vector by approximately 50%. Although these results do
indicate marginal convergence in the estimate of the absolute orbit (as
expected from results in [54]), it is noteworthy that the degradation is
very slow (<1 km∕day) and this accuracy is sufficient to achieve
relative navigation accuracy of 200 m or better.
The steady-state estimation errors expressed in relative position

and velocity in the local RTN frame for this test case are provided
in Table 6. These results show that the absolute position and velocity
are estimated to within 1 km and 1 m∕s in position and velocity.
The relative positions along the radial (Rx) and cross-track (Rz) axes
are estimated to 25mor better and the relative velocity components are
estimated towithin 20 mm∕s. The along-track (Ry) component of the

relative positions (which is the dominant component of the separation)
is estimated to within 1 km.
Finally, the pre- and post-fit bearing angle residuals for each target

in this simulation are shown in Fig. 19. It is clear from this plot that the
measurement residuals for all targets converge to 25 arcsec or smaller
within three orbits, in agreementwith the convergence trends observed
in Figs. 17 and 18.
Overall, these results suggest that a single observer can estimate

the complete state of a swarm without translational maneuvers if it is

providedwith infrequent absolute orbit estimates (e.g., from theDeep

Space Network).

3. Test Case 2: Multiple Observers

The estimation error and uncertainty for the absolute orbit of the

observer are shown in Fig. 20. As before, these errors are cast in ROE

Fig. 18 Absolute orbit propagation error (red) and estimation error (blue) with corresponding uncertainties. Measurement blackout periods are
shown in gray.

Table 6 Test case 1 steady-state estimation errors (1-σ) in RTN

Component Observer Target 1 Target 2 Target 3

δrRx (m) 26	 437 1.0	 9.6 1.5	 15.7 4.3	 23.2

δrRy (m) 69	 902 −27	 801 −102	 759 −205	 722

δrRz (m) 224	 651 0.6	 8.7 0.0	 9.2 −0.2	 6.3

δvRx (mm/s) 112	 451 0.4	 8.9 −0.7	 9.3 −1.8	 7.8

δvRy (mm/s) −68	962 −1.2	 18.0 1.5	 20.0 3.5	 18.1

δvRz (mm/s) 102	 527 −1.0	 9.8 −0.7	 10.6 −0.5	 6.9

Fig. 19 Pre-fit and post-fit bearing angle residuals for each target in test
case 1.
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space to provide a simple geometric interpretation. With the added
information from T3’s bearing angle measurements, the filter is able
to converge to steady state in only three orbits with errors of less than
100m in the semimajor axis, less than 500m in themean argument of
latitude and eccentricity vector, and about 1 km in the inclination and
RAAN. These larger errors in inclination and RAAN are expected as
they correspond to a 30 arcsec rotation of the orbit plane; the effect of
this rotation on the observed measurements is comparable to the
measurement noise.
The estimation errors and uncertainties of the relative orbits of the

targets are shown in Fig. 21. As in the previous simulation, the filter
is able to converge to steady-state errors of less than 200 m (< 0.4%)
in aδλ and less than 10 m in aδa, aδex, and aδey. However, the
estimates of the relative inclination vectors are slightly degraded,
with steady-state errors of up to 25 m. This is likely due to the
increased uncertainty in the inclination and RAAN, which is twice
as large as the final uncertainty from Test Case 1. Finally, it can be
seen that the uncertainties of the relative state estimates exhibit a clear
linear scaling with separation (because T1 is the closest and T3 is the
furthest from the observer). This range dependence is expected
because position estimation error scales linearly with separation
when using angles measurements.
Overall, these simulation results show that the complete state of a

swarm (absolute and relative orbits) can be accurately estimated from
a single coarse initial estimate that is refined using bearing angle
measurements from two observers. This approach does not require

translational maneuvers from any spacecraft, though inclusion of
knownmaneuvers would improve convergence speed and estimation
accuracy. Additionally, the results of both test cases suggest that the
StarFOX experiment will be able to provide a first-of-a-kind dem-
onstration of angles only navigation for spacecraft swarms that does
not require maneuvers or relative state estimates from the ground.

V. Conclusions

This research has put forth a complete maneuver-free angles-only
navigation approach for deployment in multi-satellite systems operat-
ing in planetary orbit regimes. By formulating the estimation archi-
tecture using anROE state description, and using key nonlinearities in
the unscented Kalman filtering framework, excellent performance,
robustness, and flexibility were shown in several Monte Carlo simu-
lations. There were several key lessons learned about the capabilities
of the navigation algorithms.As a broad theme, it was shown that filter
flexibility is enabled by expanding the estimation state. In particular,
sensor biases can be estimated as first-orderGauss–Markov processes,
which allows on-orbit calibration of the crucial navigation sensor to be
achieved online, and enables improved robustness and measurement
fault detection. Additionally, target satellite ballistic properties, like
the drag or SRP ballistic coefficients, were shown to be obtainable
from angles-only measurements with an appropriate filter dynamics
model choice. These ballistic parameters provide a wealth of addi-
tional information about the target structural properties and attitude

Fig. 20 Absolute orbit estimation error and formal covariance with measurement blackout periods shown in gray.

Fig. 21 Relative orbit estimation error and formal covariance for T1, T2, and T3 in test case 2 with measurement blackout periods indicated in gray.
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variation, and sequentially improve the dynamics modeling. Further-
more, multi-target angles-only estimation was made feasible by prag-
matic expansion of the single-target filteringmethodology tomultiple
measurement inputs with known correspondences. This allowed
a single observer satellite to scan a large vicinity and determine the
orbital states of many targets, enabling new capabilities in space
situational awareness and formation flying. In a similar multi-satellite
vein, coordinated use of multiple observers employing the navigation
algorithms in a decentralized fashion allowed extremely rapid and
accurate estimation convergence while maintaining flexibility in for-
mation and communication topology design to meet additional mis-
sion parameters. Lastly, the use of relative angles-only measurements
even enabled the simultaneous estimation of the absolute orbit of an
observer spacecraft. Although the observability problem is evenmore
limiting in this case, the use of ROEs in the framework indicates that
potential filter instabilities occur over much larger time horizons than
traditional Cartesian-coordinate-based filters. Accordingly, angles-
only measurements can be used to supplement a very sparse and
inaccurate absolute orbit update for the observer in order to achieve
practically useful absolute orbit estimation performance. In light of
these newly verified algorithmic advantages, a partnership with
NASA Ames Research Center was formed to develop the novel on-
orbit angles-only navigation testbed known as the StarFOX. The core
intent of this experiment is to increase the technology readiness level
of the proposed angles-only navigation prototype for future interplan-
etary multi-satellite formations.
Several current research efforts are underway that build from the

work presented in this paper. In particular, robust methods for han-
dling the multi-target measurement identification and correspon-
dence are being formulated to complete the full angles-only
navigation system. Similarly, the problem of simultaneous absolute
and relative orbit determination is being examined both from a
theoretical observability standpoint as well as in rigorous Monte
Carlo evaluation in order to understand the practical capabilities of
this concept for full swarm localization outside of Earth orbit. Lastly,
the hardware-in-the-loop verification achieved in this work is being
expanded to include a dedicated porting and embedding effort to run
the algorithms on representative spacecraft processors in preparation
for the on-orbit StarFOX experiment commissioning in 2022.
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