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A B S T R A C T

This paper presents a new algorithm for autonomous multitarget tracking of resident space objects using
optical angles-only measurements from a spaceborne observer. To enable autonomous angles-only navigation
of spacecraft swarms, observers must identify and track multiple known or unknown target space objects in
view, without reliance on a-priori relative orbit knowledge. Extremely high tracking precision is necessary
despite low measurement frequencies and limited computational resources. The new ’Spacecraft Angles-only
MUltitarget tracking System’ (SAMUS) algorithm has been developed to meet these objectives and constraints.
It combines domain-specific modeling of target kinematics with multi-hypothesis techniques to autonomously
track multiple unknown targets using only sequential camera images. A measurement transform ensures that
target motion in the observer reference frame follows a consistent parametric model; curve fitting is used to
predict track behavior; and kinematic track gating and scoring criteria improve the efficiency and accuracy of
the multi-hypothesis approach. Monte Carlo testing with high-fidelity simulations demonstrates close to 100%
data association precision and high recall across a range of multi-spacecraft formations, in both near-circular
and eccentric orbits. Tracking is maintained in the presence of eclipse periods, significant measurement noise,
and partially known swarm maneuvers. A comparison to other tracking algorithms reveals strong advantages
in precision, robustness and computation time, crucial for spaceborne angles-only navigation.
1. Introduction

Distributed space systems can offer many advantages over tra-
ditional monolithic spacecraft, including improved coverage, costs,
scalability, flexibility and robustness [1,2]. However, their navigation
presents significant challenges, especially in the context of deep space
missions aiming to navigate primarily autonomously using only on-
board resources. For spacecraft swarms operating at separations of
several kilometers to several thousand kilometers, a favorable solu-
tion is angles-only navigation, in which observer spacecraft obtain
bearing angle measurements to targets using an on-board vision-based
sensor (VBS). Cameras are advantageous as they are robust, low-cost,
low-power sensors already present on most spacecraft. They possess
high dynamic range capabilities and small form factors conducive to
both accurate navigation and swarm miniaturization. Many distributed
space system proposals therefore present angles-only navigation as a
key aspect, with applications to distributed science [3,4], space situ-
ational awareness [5], deep space communications [6], autonomous
rendezvous [7,8], and on-orbit servicing [9,10].

A number of studies have explored relative orbit determination
(ROD) and state estimation for spacecraft using angles-only measure-
ments. Woffinden et al. [11] and Gaias et al. [12] apply linearized
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rectilinear relative motion and relative orbital elements (ROE) respec-
tively, and conclude that the linearized angles-only ROD problem is not
fully observable due to a lack of explicit range information. Conducting
maneuvers is suggested to improve range observability but is non-ideal
because navigation and control become coupled. Sullivan et al. [13,14]
subsequently develop a maneuver-free procedure for angles-only navi-
gation. Improved state estimation is achieved by leveraging nonlinear
perturbed orbit dynamics and orbit curvature effects. Others have ex-
plored this problem from the perspective of angles-only initial relative
orbit determination (IROD). Gong et al. use the offset between the
spacecraft VBS and center of mass to improve range observability [15,
16], while Koenig et al. employ a numerical sampling approach [17].
Recently, the Absolute and Relative Trajectory Measurement System
(ARTMS) [4,14,18] has combined angles-only ROD and IROD into a
complete angles-only swarm navigation architecture. ARTMS leverages
multiple observers with VBS to each navigate subsets of swarm targets
in a distributed manner. It will be flight-tested on board the 2022 NASA
Starling mission [6], which consists of four CubeSats in low Earth orbit
(LEO) and aims to be the first in-orbit demonstration of autonomous
angles-only swarm navigation.
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Fig. 1. A synthetic VBS image with point sources labeled.

To successfully conduct angles-only navigation, the observer must
form sets of bearing angle measurements over time which correspond
to its desired target(s). This underlying task is referred to as data
association, and the combination of data association and sequential
estimation is known as target tracking. In single target tracking, the
observer extracts measurements of one desired target from extraneous
measurement clutter, noise, and other false detections. In multitarget
tracking (MTT), multiple targets may be simultaneously present and
separate measurement tracks must be formed for each [19–21]. Single
target tracking is generally less challenging because there is less am-
biguity when associating measurements for one target. MTT is more
complex due to presence of multiple (often unknown) targets, but is
consequently more flexible. Depending on swarm geometry, multiple
targets may be present in the VBS field of view (FOV), and architectures
such as ARTMS assume that multiple targets can be tracked by each
observer. MTT is therefore necessary for angles-only navigation of
spacecraft swarms. However, in existing literature, this task is often
ignored. Most spaceborne angles-only navigation frameworks consider
a single target, and in cases where multiple targets are present [13,22],
data association is assumed solved.

Consider identifying multiple targets amongst luminous spots in
a VBS image as shown in Fig. 1. Star identification algorithms can
remove known stars from consideration, but there may also be stellar
objects (SO) not in the on-board star catalog; non-stellar objects (NSO)
such as other satellites or debris; or sensor defects such as hotspots.
Target state estimates can be used for identification but their existence
or quality is not guaranteed, and state initializations often possess
significant uncertainty such that multiple bearing angles are target
candidates. Furthermore, errors in data association compound errors
in the state estimate, and vice versa. In the far range case (≥1 km
separation) considered in this paper, it is also impossible to use visual
appearance for identification. MTT and data association is therefore
necessary to enable angles-only spacecraft swarm navigation, and must
be achieved without a-priori target state information if autonomous or
self-initializing navigation is desired.

In terrestrial contexts, a variety of MTT algorithms see frequent
usage, including global nearest neighbor (GNN); joint probabilistic
data association (JPDA); multi-hypothesis tracking (MHT); and random
finite set (RFS) methods, commonly in the form of a probability hypoth-
esis density (PHD) filter [19–21,23]. When considered for spaceborne
angles-only tracking, each has advantages and disadvantages. GNN
is simple but susceptible to poor performance when targets are not
well-separated [20]. JPDA, though demonstrably accurate in many
scenarios, generally assumes a known number of targets [21]. Both
approaches are then non-ideal in that targets may not be well-separated
and the number of visible targets may be unknown. MHT is a theo-
retically optimal approach that performs well for low signal-to-noise
ratios. However, it relies on forming increasing numbers of target
515
track hypotheses such that heuristic hypothesis pruning is necessary for
reasonable computation [20]. This is particularly challenging for low-
powered spacecraft processors. RFS techniques are newer, with many
promising varieties seeing continued development [19]; conversely,
they are somewhat less proven and approximations are needed for real-
time usage. Finally, although machine learning approaches for data
association have become increasingly popular, there are difficulties in
generating training data representative of the space environment [24].

Spaceflight also places stringent requirements on performance.
Angles-only navigation exploits small nonlinearities to estimate space-
craft states [13] and is particularly sensitive to measurement errors.
Close to 100% data association precision is necessary for risk-averse
on-orbit applications, and onboard resources are limited such that
high computational efficiency is needed. Measurement frequencies are
low, on the order of minutes between images, and optical measure-
ments imply large data gaps when targets are in eclipse. Relevant
hardware-limited examples in terrestrial robotics are presented by Cano
et al. [25], who employ a Gaussian mixture PHD filter to track several
robots with a single camera, and Farazi et al. [26], who employ a
neural-network-based pipeline running in real time on an observer
robot. Both display promising accuracy, but rely on more detailed,
higher-frequency imagery than is typical for spaceborne cameras [6].
A in-orbit example is given by LeGrand et al. [27] who suggest using
a cardinalized PHD filter to track nearby NSO from an inspector
spacecraft. However, they apply range information from stereo imagery
which may not always be obtainable.

Two prior flight experiments have conducted angles-only naviga-
tion with single target tracking. In 2012, the ARGON experiment [7]
enabled the rendezvous of two smallsats in LEO from inter-satellite
separations of 30 km to 3 km. To identify the target, bearing angles
in successive images were linked by finding similarities in the sizes
and positions of their associated pixel clusters. The target was assumed
to move significantly less than other objects, and its measurement
track was chosen as that displaying the largest difference from the
average linked motion. In 2016, the AVANTI [8] experiment performed
a rendezvous of one smallsat and one picosat from separations of 13 km
to 50 m. Unlike ARGON, which utilized ground-in-the-loop elements,
AVANTI operated primarily autonomously. The Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) algorithm was ap-
plied for target identification. In sets of successive images, DBSCAN
identified the target as a cluster of multiple measurements within a
small radius. Target tracks were expected to display curving motion so
measurements with outlying residuals after Bezier curve fitting were
rejected. While ARGON and AVANTI proved successful, their data
association methods assume a single target and cannot be applied to
multiple targets without significant modification.

In response to these limitations, this paper develops a new angles-
only MTT algorithm suitable for spacecraft swarms. Henceforth the
algorithm is referred to as the ‘Spacecraft Angles-only MUltitarget
tracking System’ (SAMUS). SAMUS considers tracking from the per-
spective of a single observer tracking multiple targets. In a swarm
with multiple distributed observers, each observer independently runs
SAMUS to track those targets in its FOV. SAMUS is agnostic to orbit
eccentricity and requires only (1) coarse absolute orbit knowledge
of the observer and (2) knowledge of the magnitudes and execution
times of swarm maneuvers (but not which maneuvers correspond to
which targets). No knowledge of the number of targets or relative
orbits is needed. SAMUS fuses the inspirations of ARGON and AVANTI
with an MHT framework to enable multitarget tracking, and leverages
kinematic modeling of relative orbits to enhance robustness and reduce
computational complexity. In this fashion SAMUS overcomes the lim-
itations of existing tracking algorithms to meet the tight requirements
of general autonomous swarm operations in orbit.

Consequently, SAMUS presents the following theoretical contribu-
tions to angles-only target tracking in space. First, it is observed that
target motion follows a known parametric model in the observer’s
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reference frame, defined in terms of observer absolute orbit elements
(OE) and target relative orbit elements (ROE). Although perturbing
forces modify this motion, the relative proximity of targets means they
are similarly affected; thus, perturbation effects can be approximately
cancelled by differencing the motion of separate targets. Second, this
parametric model is fitted to target bearing angle tracks using linear
system techniques. Future target measurements can then be accurately
predicted. Third, a set of kinematic criteria is developed which target
tracks must fulfill to be valid, and target tracks are scored by how
well they match kinematic expectations. These criteria enable efficient
removal of unlikely data associations and robust selection of likely asso-
ciations for MHT. Fourth, maneuvers are assigned to tracks by modeling
expected changes in kinematic behavior. Combined, these techniques
enable angles-only tracking of multiple targets in orbit. SAMUS is
validated with rigorous, high-fidelity test suites, comprising of Monte
Carlo simulations using both synthetic measurements and hardware-
in-the-loop (HIL) imagery. It can be integrated with state estimation
frameworks to form a complete autonomous swarm navigation solution
and will be flight tested in this form aboard the NASA Starling mission
in 2022 [6,18].

Following this introduction, Section 2 discusses the mathematical
background of target relative orbit behavior and MHT. The detailed
processes and reasoning behind SAMUS are highlighted in Section 3,
followed by performance testing and validation in Section 4. Section 5
presents concluding remarks.

2. Background

2.1. Coordinate frames

To obtain measurements, the observer spacecraft processes VBS
images to compute time-tagged bearing angles to objects in its FOV.
Bearing angles consist of azimuth and elevation (𝛼, 𝜖)⊤ and subtend the
line-of-sight (LOS) vector 𝛿𝒓 = (𝛿𝑟𝑥 , 𝛿𝑟


𝑦 , 𝛿𝑟


𝑧 )
⊤ from the observer to

its target. Superscript  indicates that the vector is described in the
observer VBS coordinate frame.  consists of orthogonal basis vectors
�̂� , �̂� , �̂� where �̂� is aligned with the camera boresight and �̂� =
�̂� × �̂� . This relates to bearing angles via [13]
[

𝛼
𝜖

]

=
[

arcsin (𝛿𝑟𝑦 ∕‖𝛿𝒓

‖2)

arctan (𝛿𝑟𝑥 ∕𝛿𝑟

𝑧 )

]

(1)

In this work, the primary observer reference frame is the observer
radial/along-track/cross-track (RTN) frame . It is centered on and
rotates with the observer and consists of orthogonal basis vectors �̂�

(directed along the observer’s absolute position vector); �̂� (directed
along the observer’s orbital angular momentum vector); and �̂� =
�̂� × �̂� [28]. Similarly, define a frame  using �̂� (directed along
the observer’s velocity vector); �̂� = �̂�; and �̂� = �̂� × �̂� .  only
differs from  by a rotation of the observer flight path angle 𝜙𝑓 about
�̂�, with 𝜙𝑓 ≈ 0 in near-circular orbits [28].

Typical angles-only navigation scenarios present targets with large
separations in the velocity or anti-velocity directions [4–8]. Thus, when
defining the tracking frame  in which MTT is performed, a natural
choice is to align its basis vector �̂� with the observer’s velocity or anti-
velocity direction ±�̂� . Consequently, �̂� is aligned with the observer’s
orbital angular momentum vector and �̂� = �̂� × �̂� .  then differs
from  by a rotation of +90◦ about �̂� . For convenience, we align the
VBS frame  with  ; otherwise, LOS vectors in  can be rotated into
 using rotation matrices with respect to the Planet-Centered Inertial
(PCI) frame  , as per

𝛿𝒓 =  ⃖⃖⃗𝑹  ⃖⃖⃗𝑹  ⃖⃖⃗𝑹 𝛿𝒓 (2)

where  ⃖⃖⃗𝑹 denotes a rotation from frame  into frame .  ⃖⃖⃗𝑹 is
known from geometry;  ⃖⃖⃗𝑹 is known if the observer’s absolute orbit
516
Fig. 2. Observer coordinate frames  (black),  (red) and  (green). Bearing angles
(𝛼, 𝜖)⊤ and target LOS vector 𝛿𝒓 are defined with respect to  . Tracking frame  is
aligned with  . (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

is being estimated; and  ⃖⃖⃗𝑹 is computed by performing star identifi-
cation and attitude determination with the VBS [7]. Fig. 2 depicts the
relationships between frames and measurements.

To capture orbit curvature with improved accuracy, the relative
positions of targets with respect to an observer can be described in
curvilinear coordinates 𝛿𝒓curv = (𝛿𝑟, 𝑎𝛩, 𝑎𝛷). Here, 𝛿𝑟, 𝛩,𝛷 are dif-
ferences in orbit radii, angular in-plane separations and angular out-
of-plane separations respectively, for observer semimajor axis 𝑎 [29].
Hereafter the curvilinear representation is used, which can be mapped
back to rectilinear coordinates via

𝛿𝒓rect =
⎡

⎢

⎢

⎣

(𝑎 + 𝛿𝑟)𝑐𝛩𝑐𝛷 − 𝑎
(𝑎 + 𝛿𝑟)𝑠𝛩𝑐𝛷
(𝑎 + 𝛿𝑟)𝑠𝛷

⎤

⎥

⎥

⎦

(3)

𝑐 and 𝑠 denote cosine and sine of the subscripted argument.

2.2. Relative orbit dynamics

To discuss the dynamic behavior of targets, this paper applies a
quasi-nonsingular ROE state representation. The ROE are defined in
terms of the OE of the observer and target (denoted by subscripts ‘𝑜’
and ‘𝑡’ respectively) as [30]

𝛿𝒙roe =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛿𝑎
𝛿𝜆
𝛿𝑒𝑥
𝛿𝑒𝑦
𝛿𝑖𝑥
𝛿𝑖𝑦

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛿𝑎
𝛿𝜆

|𝛿𝒆| 𝑐𝜙
|𝛿𝒆| 𝑠𝜙
|𝛿𝒊| 𝑐𝜃
|𝛿𝒊| 𝑠𝜃

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(𝑎𝑡 − 𝑎𝑜)∕𝑎𝑜
(𝑢𝑡 − 𝑢𝑜) + 𝑐𝑖𝑜 (𝛺𝑡 −𝛺𝑜)

𝑒𝑡𝑐𝜔𝑡 − 𝑒𝑜𝑐𝜔𝑜
𝑒𝑡𝑠𝜔𝑡 − 𝑒𝑜𝑠𝜔𝑜

𝑖𝑡 − 𝑖𝑜
𝑠𝑖𝑜 (𝛺𝑡 −𝛺𝑜)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(4)

Above, 𝑎, 𝑒, 𝑖, 𝛺, 𝜔 and 𝑀 are the classical Keplerian OE and 𝑢 =
𝑀 + 𝜔 is the mean argument of latitude. The ROE consist of 𝛿𝑎, the
relative semimajor axis; 𝛿𝜆, the relative mean longitude (analogous to
target range); 𝛿𝒆, the relative eccentricity vector with magnitude 𝛿𝑒
and phase 𝜙; and 𝛿𝒊, the relative inclination vector with magnitude 𝛿𝑖
and phase 𝜃. This representation is singular for equatorial orbits and
fully nonsingular ROE have also been developed [31]. For improved
application to eccentric orbits, Sullivan et al. [13] present ‘eccentric
ROE’ (EROE). The EROE feature a modified relative mean longitude
𝛿𝜆∗ and modified relative eccentricity vector 𝛿𝒆∗ (with magnitude 𝛿𝑒∗
and phase 𝜙∗), defined by

𝛿𝜆∗ = 𝜉𝛿𝜆 + (1 − 𝜉)
(

−
𝑠𝜔𝑜
𝑒𝑜
𝛿𝑒𝑥 +

𝑐𝜔𝑜
𝑒𝑜
𝛿𝑒𝑦 + cot 𝑖𝑜𝛿𝑖𝑦

)

(5)

𝛿𝑒∗𝑥 =
𝑐𝜔𝑜𝛿𝑒𝑥 + 𝑠𝜔𝑜𝛿𝑒𝑦

2
= 𝛿𝑒∗𝑐𝜙∗ (6)
1 − 𝑒𝑜
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(

𝛿𝑒∗𝑦 =
𝑒𝑜(−𝛿𝜆 + cot 𝑖𝑜𝛿𝑖𝑦) − 𝑠𝜔𝑜𝛿𝑒𝑥 + 𝑐𝜔𝑜𝛿𝑒𝑦

(1 − 𝑒2𝑜)3∕2
= 𝛿𝑒∗𝑠𝜙∗ (7)

𝜉 =
(1 + 𝑒2𝑜∕2)
(1 − 𝑒2𝑜)3∕2

(8)

he EROE reduce to the ROE for 𝑒 = 0.
In near-circular orbits, the ROE provide geometric insight because

ach component corresponds to a feature of the relative motion tra-
ectory in the RTN frame. The terms 𝛿𝑎 and 𝛿𝜆 capture mean offsets
n the radial and along-track directions respectively; magnitudes of 𝛿𝑒
nd 𝛿𝑖 correspond to magnitudes of in-plane (RT) and out-of-plane (RN)
scillations respectively; and phases of 𝛿𝑒 and 𝛿𝑖 dictate the orientation
nd aspect ratio of the relative motion ellipse in the RN plane. These
scillations possess the same frequency as the observer orbit and are
hown in black in Fig. 3. In eccentric orbits, additional offsets and
scillations in the RT and RN planes are produced, defined in 𝛿𝒆∗ and
𝜆∗. These oscillations act at twice the orbit frequency and are shown
n red in Fig. 3. Sullivan [13] develops a linear map between the EROE
nd the target’s nondimensional relative position in RTN, building upon
nitial work by D’Amico [30], as per

𝛿𝑟𝑥
𝛿𝑟𝑦
𝛿𝑟𝑧

⎤

⎥

⎥

⎥

⎦

≈ 𝑟𝑜

⎡

⎢

⎢

⎢

⎢

⎣

𝛿𝑎 − 𝑒𝑜
2 𝛿𝑒

∗
𝑥 − 𝛿𝑒

∗
(

𝑐𝑓𝑜−𝜙∗ +
𝑒𝑜
2 𝑐2𝑓𝑜−𝜙∗

)

𝛿𝜆∗ + 𝛿𝑒∗
(

2𝑠𝑓𝑜−𝜙∗ +
𝑒
2 𝑠2𝑓𝑜−𝜙∗

)

𝛿𝑖𝑠𝑓𝑜+𝜔𝑜−𝜃

⎤

⎥

⎥

⎥

⎥

⎦

(9)

here 𝑓𝑜 is the observer true anomaly and 𝑟𝑜 is orbit radius. This
apping defines target motion in RTN at small separations and is

isually represented by superimposing the black and red components
n Fig. 3 [14].

For angles-only tracking, the relevant components of motion are
hose occurring in the image plane of the VBS. As per the earlier
oordinate frame definitions, these are components (𝛿𝑟𝑥 , 𝛿𝑟𝑧 ) in Eq. (9)
nd Fig. 3. The elliptical aspects of this motion can be described
sing the traditional geometric ellipse parameters of semimajor axis 𝑎𝑒,
emiminor axis 𝑏𝑒, center (𝑥𝑒, 𝑦𝑒) and tilt 𝛾𝑒 via [29]

𝑥𝑒, 𝑦𝑒) = (𝛿𝑎, 0) (10)

(𝑎𝑒, 𝑏𝑒) =

( 𝛿𝑒2 + 𝛿𝑖2 ±
√

𝛿𝑒4 + 𝛿𝑖4 − 2𝛿𝑒2𝛿𝑖2𝑐2(𝜙−𝜃)
2

)
1
2

(11)

𝛾𝑒 =
1
2
arctan

(−2𝛿𝑒𝛿𝑖𝑠𝜙−𝜃
𝛿𝑒2 − 𝛿𝑖2

)

(12)

Target relative orbits are also affected by disturbing forces such
as atmospheric drag, solar radiation pressure (SRP), third-body grav-
ity and spherical harmonic gravity. These cause secular drifts and
long- and short-period perturbations [30]. On the timescales of image-
to-image tracking (i.e. ≤ 5 minutes) short-period perturbations are
particularly detrimental. In LEO, the most significant perturbation is
commonly 𝐽2 Earth oblateness by several orders of magnitude [30]. Its
short-period and secular effects on the ROE are [32]

𝛿𝒆sp =
[

𝛿𝑒𝑥,sp
𝛿𝑒𝑦,sp

]

=
3𝐽2𝑅2

𝑃

2𝑎2

[

(1 − 5
4 𝑠

2
𝑖 )𝑐𝑢 + ( 7

12 𝑠
2
𝑖 )𝑐3𝑢

(1 − 7
4 𝑠

2
𝑖 )𝑠𝑢 + ( 7

12 𝑠
2
𝑖 )𝑠3𝑢

]

(13)

𝛿𝒊sp =
[

𝛿𝑖𝑥,sp
𝛿𝑖𝑦,sp

]

=
3𝐽2𝑅2

𝑃

8𝑎2

[

𝑠2𝑖 𝑐2𝑢
2𝑐𝑖 𝑠𝑖 𝑠2𝑢

]

(14)

𝛿𝒆sec =
[

𝛿𝑒𝑥,sec
𝛿𝑒𝑦,sec

]

= 𝛿𝑒
⎡

⎢

⎢

⎣

cos (𝜙0 +
3𝜋𝑡
2𝑇 𝐽2

𝑅2
𝑃
𝑎2

(5𝑐2𝑖 − 1))

sin (𝜙0 +
3𝜋𝑡
2𝑇 𝐽2

𝑅2
𝑃
𝑎2

(5𝑐2𝑖 − 1))

⎤

⎥

⎥

⎦

(15)

𝛿𝒊sec =
[

𝛿𝑖𝑥,sec
𝛿𝑖𝑦,sec

]

= 𝛿𝑖

[

1

1 − 3𝜋𝑡
𝑇 𝐽2

𝑅2
𝐸
𝑎2
𝛿𝑖𝑠2𝑖

]

(16)

where 𝑡 is time, 𝑇 is the orbit period, 𝑅𝑃 is the radius of the central
body and 𝜙0 is the phase of 𝛿𝒆 at initial epoch 𝑡0. These variations in
𝛿𝒆 and 𝛿𝒊 must be included in Eq. (9) if their effects are significant in
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the orbit regime of interest. Similar expressions have been derived for
other forces such as drag [31].

Maneuvers by the observer or targets also affect relative motion.
Consider a change in the ROE, 𝛥𝛿𝒙roe, and a maneuver by the observer
in RTN, 𝛿𝒗𝑜 = (𝛿𝑣𝑥 , 𝛿𝑣


𝑦 , 𝛿𝑣


𝑧 )

⊤. In eccentric orbits, these are related
via a control input matrix 𝑩roe [13,33] defined as

𝛥𝛿𝒙roe = 𝑩roe𝛿𝒗𝑜 (17)

𝑩roe = −
𝜂
𝑎𝑛

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2𝑒
𝜂2
𝑠𝑓

2𝑘
𝜂2

0
(𝜂−1)𝑘𝑐𝑓−2𝜂𝑒

𝑒𝑘
(1−𝜂)(𝑘+1)𝑠𝑓

𝑒𝑘 0

𝑠𝑓+𝜔
(𝑘+1)𝑐𝑓+𝜔+𝑒𝑥

𝑘
𝑒𝑦𝑠𝑓+𝜔
𝑘 tan 𝑖

−𝑐𝑓+𝜔
(𝑘+1)𝑠𝑓+𝜔+𝑒𝑦

𝑘 − 𝑒𝑥𝑠𝑓+𝜔
𝑘 tan 𝑖

0 0 𝑐𝑓+𝜔
𝑘

0 0 𝑠𝑓+𝜔
𝑘

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(18)

𝜂 =
√

1 − 𝑒2, 𝑛 =
√

𝜇∕𝑎3, 𝑘 = 1 + 𝑒𝑐𝑓 (19)

Similarly, the change in ROE from target maneuver 𝛿𝒗𝑡 is obtained via
𝛥𝛿𝒙roe = −𝑩roe𝛿𝒗𝑡 . Change in the EROE, 𝛥𝛿𝒙eroe, is computed by first
computing 𝛥𝛿𝒙roe and then mapping to 𝛥𝛿𝒙eroe via Eqs. (5)–(7).

2.3. Multi-hypothesis tracking

The objective of data association is to collect sensor data containing
one or more potential targets and to partition it into sets of observations
− or ‘tracks’ − produced by the same target over time [34]. Assume
that tracks have been formed from previous data and that a new set of
measurements − or ‘scan’ − has become available. Then, a typical MTT
system performs five sequential tasks:

1. Sensor data processing: retrieve new measurements.
2. Measurement prediction: use existing tracks to predict new mea-

surements.
3. Measurement gating: assess which new measurements may rea-

sonably be associated with which tracks.
4. Measurement-to-track association: score valid associations and

determine the best option(s).
5. Track maintenance: initialize new tracks, confirm likely tracks

and delete unlikely tracks.

Difficulties arise when targets are closely spaced and observations may
be reasonably associated with multiple tracks. A prominent approach
for handling these ambiguities is multi-hypothesis tracking. MHT ap-
plies a delayed decision philosophy by propagating and maintaining
multiple association hypotheses, since future data can aid in disam-
biguating past associations. The operational logic is presented in Fig. 4.
With each new scan, new measurements are received and are gated
with respect to existing tracks. New tracks and hypotheses are formed
and evaluated in terms of likelihood. Unlikely hypotheses are deleted
and new measurements are predicted for surviving tracks. MHT was
initially developed by Reid [35] and has since been expanded into a
variety of forms [36–39].

Consider Fig. 5, in which tracks T1 (blue) and T2 (red) lead to
predicted observations P1 and P2. Four measurements are received:
M1, . . . , M4. Measurements can be associated with existing tracks if
they fall within track gates, or can start a new track. Following the
convention of Blackman [34], denote T3 (T1, M1) as Track 3 formed
from the association of T1 and M1. Similarly, there exists T4 (T1, M2);
T5 (T1, M3); T6 (T2, M2); and T7 (T2, M3). Furthermore, NT1, . . . , NT4
denote new tracks initiated from M1, . . . , M4. Tracks are ‘compatible’
if they have no observations in common, and MHT ‘hypotheses’ are
composed of sets of compatible tracks. In the above example there are
10 feasible hypotheses, including H1: (T1, T2, NT1, . . . , NT4), H2: (T3,
T6, NT3, NT4), H3: (T3, T7, NT2, NT4), and so on. Upon receiving
new measurements, existing hypotheses are expanded into sets of new
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Fig. 3. Target relative motion [14] in the �̂�-�̂� (RT) and �̂�-�̂� (RN) planes as defined by the EROE and Eq. (9). Motion consists of components which are first-order in spacecraft
separation (black) and components proportional to orbit eccentricity (red). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
Fig. 4. MHT logic overview [34].

Fig. 5. A notional illustration of tracks T1 (blue) and T2 (red) and their predicted
measurements and track gates. New measurements M1, . . . , M4 are associated to tracks
via MHT. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

hypotheses by considering all valid measurement-to-track associations
that maintain compatibility.

To evaluate hypotheses, MHT considers physical consistency and
the probability of target presence versus false alarms. The likelihood
ratio (LR) for associating data into a track is traditionally defined
as [40,41]

LR =
𝑝(𝐷|𝐻1)𝑃0(𝐻1)
𝑝(𝐷|𝐻0)𝑃0(𝐻0)

=
𝑃𝑇
𝑃𝐹

(20)

Hypotheses 𝐻1 and 𝐻0 are the true target and false alarm hypotheses
with probabilities 𝑃𝑇 and 𝑃𝐹 respectively. 𝑃𝑇 assumes all track obser-
vations are of the same target, and 𝑃𝐹 assumes all track observations
are of the background. 𝐷 represents data such that 𝑝(𝐷|𝐻 ) is the
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𝑖

probability density function evaluated with received data 𝐷 under the
assumption that 𝐻1 is correct. 𝑃0(𝐻𝑖) is the a-priori probability of 𝐻𝑖.
In practice, log-likelihood ratio (LLR) is used because it directly relates
to true target probability 𝑃𝑇 via

LLR = ln (𝑃𝑇 |𝑃𝐹 ) ⟹ 𝑃𝑇 = 𝑒LLR∕(1 + 𝑒LLR) (21)

The LLR is also known as the track score, and the score of a hypoth-
esis is the sum of all constituent track scores. As outputs, MHT may
provide the most likely track per target or the mean state estimate and
covariance computed from all branch probabilities.

A prominent disadvantage of MHT is the potential combinatorial
explosion in the number of generated tracks and hypotheses as new
scans arrive [34]. Track pruning and merging must therefore be used to
control growth. When describing these operations, tracks can be viewed
as branches in a tree: nodes occur when tracks split into multiple
hypotheses, and a tree is a set of tracks with a common root node that
represents one hypothesized target. ‘N-scan pruning’ determines which
tracks in each tree are part of the best current hypothesis (at step 𝑘)
and goes back 𝑁 scans (e.g. 𝑁 = 2) to establish a new root node.

Fig. 6 presents examples of track updates for trees F1 and F2. At
step 𝑘 − 2, T3 is spawned as the root of a new tree, F2. At step 𝑘 − 1,
T6 is pruned for being a low-scoring track. At step 𝑘, 2-scan pruning is
performed: in F1, T2 is part of the best hypothesis and becomes the new
root, such that hypotheses on the left-hand branch of F1 are discarded
and decisions prior to 𝑘−2 become final. F2 is not yet old enough to be
affected by the update. New global hypotheses are formed by choosing
at most one track from each tree: for example, H1 (T2, T8).

Clustering, the 𝑚-best method and track-oriented MHT are used to
reduce the number of hypotheses for computation [34]. Tracks in a
‘cluster’ are those which can be linked through shared observations.
Clusters can be independently processed because different clusters do
not share measurements and by decomposing MHT into a set of smaller
problems, fewer computations are required. The 𝑚-best algorithm ap-
plies Murty’s method [42] for finding the 𝑚-best solutions to the
association problem. It limits the number of new hypotheses formed at
scan 𝑘 to 𝑚(𝑘), preventing creation of many low-probability hypothe-
ses. In track-oriented MHT, rather than maintaining and expanding
hypotheses from scan-to-scan, existing hypotheses are discarded and
new hypotheses are formed from tracks that survived pruning. This
improves performance when there are many more hypotheses than
tracks.
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Fig. 6. Trees F1 and F2 with 2-scan pruning [34,36]. Blue denotes the best global
hypothesis at step 𝑘. New root nodes are selected at 𝑘− 2 and dissimilar branches are
pruned. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

3. SAMUS algorithm

The SAMUS algorithm developed in this paper fuses the single-
target kinematic techniques of prior flight projects with a multitarget
MHT framework. SAMUS applies the core concept of MHT in that as
measurements arrive, multiple tracks and hypotheses are simultane-
ously initialized, propagated, scored and trimmed, with the intention of
robustly converging to the correct hypothesis over time. Novelty arises
from the application of domain-specific knowledge to greatly improve
the accuracy and efficiency of the approach. MHT is chosen as a basis
because it is considered mature and demonstrably accurate [34,36]
with the disadvantage of needing to heuristically trim hypotheses for
real-time computation. However, the generally consistent behavior of
targets in orbit provides particularly effective trimming criteria that
support the delayed decision approach of MHT − as more measure-
ments are received, target motion can be judged more conclusively to
arrive at the correct associations. MHT is also able to quickly converge
to a physical hypothesis, which is not always possible with other MTT
methods.

Fig. 7 defines relevant geometric quantities for SAMUS in the bear-
ing angle plane. In the upper figure, (𝛼, 𝜖)𝑘 is a track measurement at
epoch 𝑘; the vector 𝑣𝑘 is the track ‘step’ from (𝛼, 𝜖)𝑘−1 to (𝛼, 𝜖)𝑘; and
𝜓𝑘 is the angle between 𝑣𝑘−1 and 𝑣𝑘. In the lower figure, 𝑑𝑘 is the
magnitude of 𝑣𝑘 while 𝜁𝑘 is its phase; (𝛼𝑝, 𝜖𝑝)𝑘 is the predicted track
measurement at epoch 𝑘; and 𝑑𝑝,𝑘, 𝜁𝑝,𝑘 are defined as the predicted
magnitude and phase of 𝑣𝑘, respectively.

Within SAMUS, target tracks consist of successive ‘segments’. Seg-
ments are separated by either (1) a hypothesized maneuver, or (2) a
measurement gap such as an eclipse period. When tracking within a
segment, SAMUS applies knowledge that target motion should be con-
sistent as per Eq. (9). Upon encountering a maneuver or measurement
gap, SAMUS applies expected changes in motion from Eqs. (16)–(18) to
assign the next measurement. Tracking proceeds as normal during the
subsequent segment. Fig. 8 presents a notional illustration of a track
with three segments.

To operate, three assumptions are required by SAMUS. First, targets
remain sufficiently within the VBS FOV such that consistent measure-
ment arcs of ≥4 successive images are obtained per orbit. Second,
the observer’s absolute orbit is coarsely known such that the rotations
between inertial and observer reference frames can be estimated and
expected target visibility can be computed (e.g. expected orbit eclipse
periods). Third, maneuvers by the observer and targets during the
tracking period are impulsive and their execution times and RTN
components are known. However, the correspondence between each
specific maneuver and tracked target does not need to be known. This
scenario is representative of a swarm mission with active control.

The following sections present SAMUS in detail, echoing the MTT
task order from Section 2.3: (1) sensor data processing, (2) measure-
ment prediction, (3) track gating, (4) measurement association, (5)
maneuver association and (6) track maintenance.
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Fig. 7. Geometric target track quantities in the bearing angle plane with elevation on
the 𝑥-axis and azimuth on the 𝑦-axis. (𝛼, 𝜖)𝑘 are bearing angle measurements at epoch
𝑘.

Fig. 8. Notional illustration of a track in bearing angle space with three segments.
Segments are separated by data gaps or maneuvers.

3.1. Sensor data processing

A VBS image typically contains many luminous objects, including
targets, other NSO, and SO. First, the raw image is simplified into
list of pixel cluster centroids. Star identification algorithms such as
Pyramid [43] are applied to remove SO from the list of centroids. Non-
catalog SO are detected by considering objects with unit vectors in the
PCI frame which remain unchanged between images. Camera hotspots
are removed by considering objects with constant pixel coordinates
between images. These steps are common in star tracker usage [7,8]
and are not detailed here, but result in a list of bearing angles to targets
and other remaining unidentified objects in the FOV.

Non-Keplerian forces (such as 𝐽2 gravity) affect target motion and
distort the parametric form of Eq. (9). To reduce these effects, SAMUS
uniquely applies a measurement transform when multiple targets are
present. Tracks of a target 𝑖 are synchronously differenced with respect
to tracks of a target 𝑗 (𝑖 ≠ 𝑗), thus using 𝑗 as the virtual, moving origin
of a tracking frame for 𝑖, as per

(𝛼, 𝜖)
𝑖∕𝑗
𝑖 = (𝛼, 𝜖)𝑖 − (𝛼, 𝜖)𝑗 (22)

Frame 𝑖∕𝑗 denotes target 𝑖 viewed with respect to target 𝑗. In angles-
only scenarios of interest, swarm members are in relative proximity in
inertial space and affected similarly by perturbations. Thus, the origin
of 𝑖∕𝑗 and the target 𝑖 measurements are affected by similar forces. In
 , perturbation effects are approximately cancelled and motion with
𝑖∕𝑗
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Fig. 9. Target trajectories without 𝐽2 effects (left), with 𝐽2 effects (center), and with 𝐽2 effects and the measurement transform (right).
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Table 1
Swarm configuration for Fig. 9.

OE Obs. ROE Tar. 1 Tar. 2 Tar. 3

𝑎 (km) 6878 𝛿𝑎 (km) −0.1 −0.05 0
𝑒 0.001 𝛿𝜆 (km) −60 −50 −40
𝑖 (◦) 91 𝛿𝑒𝑥 (km) −0.05 0.5 0.15
Ω (◦) 0 𝛿𝑒𝑦 (km) −0.1 0.3 0
𝜔 (◦) 0 𝛿𝑖𝑥 (km) −0.5 −0.45 −0.15
𝑀0 (◦) 0 𝛿𝑖𝑦 (km) 0.05 0.1 0.2

the form of Eq. (9) is recovered. Mathematically, consider targets 𝑖 and
with similar OE such that short-period oscillations 𝛿𝒆𝑖,sp ≈ 𝛿𝒆𝑗,sp and
𝒊𝑖,sp ≈ 𝛿𝒊𝑗,sp. Their �̂� components of relative position are

𝛿𝑟𝑧,𝑖 = (𝛿𝑖𝑥𝑖 + 𝛿𝑖𝑥𝑖 ,sp)𝑠𝑓𝑜+𝜔𝑜 − (𝛿𝑖𝑦𝑖 + 𝛿𝑖𝑦𝑖 ,sp)𝑐𝑓𝑜+𝜔𝑜 (23)

𝛿𝑟𝑧,𝑗 = (𝛿𝑖𝑥𝑗 + 𝛿𝑖𝑥𝑗 ,sp)𝑠𝑓𝑜+𝜔𝑜 − (𝛿𝑖𝑦𝑗 + 𝛿𝑖𝑦𝑗 ,sp)𝑐𝑓𝑜+𝜔𝑜 (24)

⟹ 𝛿𝑟
𝑖∕𝑗
𝑧,𝑖 = 𝛿𝑟𝑧,𝑖 − 𝛿𝑟


𝑧,𝑗 (25)

≈ (𝛿𝑖𝑥𝑖 − 𝛿𝑖𝑥𝑗 )𝑠𝑓𝑜+𝜔𝑜 − (𝛿𝑖𝑦𝑖 − 𝛿𝑖𝑦𝑗 )𝑐𝑓𝑜+𝜔𝑜 (26)

nd 𝛿𝑟𝑖∕𝑗
𝑧,𝑖 recovers the form of Eq. (9). Similar results are obtained for

he �̂� and �̂� components of relative motion. Effects of this transform
or the case in Table 1 are shown in Fig. 9.

Typical CubeSat star trackers produce bearing angle measurement
oise on the order of 20′′ (1𝜎) [44]. Applying Eq. (13) with 𝛿𝜆 = 100

km, short-period distortions of almost 500′′ are observed in extreme
ases, well above star tracker noise. However, if formations are con-
trained to ROE magnitude ratios of 𝛿𝜆∕𝛿𝑒 ≥ 20 and 𝛿𝜆∕𝛿𝑖 ≥ 20 (such
hat along-track separations are dominant) for 10 ≤ 𝛿𝜆 ≤ 200 km, the
aximum difference in short-period distortions between targets is less

han 10′′. Thus, errors after applying the transform are below expected
𝜎 noise. Data association errors can also become easier to distinguish
n the differential frame. If measurements are swapped between Targets
and 𝑗, total error in 𝑖∕𝑗 is the sum of both association errors because
he error affects both the frame origin and the track.

.2. Measurement prediction

After applying the differential transform, the only quickly-varying
erm on the right hand side of Eq. (9) is observer true anomaly 𝑓𝑜 (or its
quivalent, depending on orbit regime). Thus, even if specific ROE are
nknown, target motion remains parametric in 𝑓𝑜 with known form.
urthermore, the parameter 𝑓𝑘 which generated each track measure-
ent (𝛼, 𝜖)⊤𝑘 is obtainable from the observer’s absolute orbit estimate,

s are other relevant OE. This allows the model of Eq. (9) to be fitted
o hypothesized tracks and the resulting fit to predict future track
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easurements. For bearing angles defined in the RTN frame, azimuth
orresponds to �̂�𝑧 and elevation to �̂�𝑥 . Parametric target motion in
earing angle space can therefore be written as

𝜖
𝛼

]

≈ 𝑟
𝑎

[

𝑥1 − 𝑥2(𝑐𝑓−𝑥3 +
𝑒
2 𝑐2𝑓−𝑥3 )

𝑥4 + 𝑥5𝑠𝑓+𝜔−𝑥6

]

(27)

= 𝑟
𝑎

[

𝑥1 − 𝑥2𝑠𝑥3 (𝑠𝑓 + 𝑒
2 𝑠2𝑓 ) − 𝑥2𝑐𝑥3 (𝑐𝑓 + 𝑒

2 𝑐2𝑓 )
𝑥4 + 𝑥5𝑐𝑥6𝑠𝑓+𝜔 − 𝑥5𝑠𝑥6 𝑐𝑓+𝜔

]

(28)

here constants �⃗� = (𝑥1,… , 𝑥6)⊤ are scaled bearing angle equivalents
f the EROE in Eq. (9). Given a set of (𝛼, 𝜖)⊤𝑘 measurements and their
espective 𝑓𝑘, 𝑟𝑘, 𝑎𝑘, 𝜔𝑘 for 𝑘 = 1,… , 𝑛, �⃗� can be estimated by solving a

pair of separable linear systems in elevation and azimuth, via

⎡

⎢

⎢

⎢

⎣

𝑟1
𝑎1
(𝑐𝑓1 +

𝑒1
2 𝑐2𝑓1 )

𝑟1
𝑎1
(𝑠𝑓1 +

𝑒1
2 𝑠2𝑓1 )

𝑟1
𝑎1

⋮ ⋮ ⋮
𝑟𝑛
𝑎𝑛
(𝑐𝑓𝑛 +

𝑒𝑛
2 𝑐2𝑓𝑛 )

𝑟𝑛
𝑎𝑛
(𝑠𝑓𝑛 +

𝑒𝑛
2 𝑠2𝑓𝑛 )

𝑟𝑛
𝑎𝑛

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑦1
𝑦2
𝑦3

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝜖1
⋮
𝜖𝑛

⎤

⎥

⎥

⎦

(29)

⎡

⎢

⎢

⎢

⎣

𝑟1
𝑎1
𝑐𝑓1+𝜔1

𝑟1
𝑎1
𝑠𝑓1+𝜔1

𝑟1
𝑎1

⋮ ⋮ ⋮
𝑟𝑛
𝑎𝑛
𝑐𝑓𝑛+𝜔𝑛

𝑟𝑛
𝑎𝑛
𝑠𝑓𝑛+𝜔𝑛

𝑟𝑛
𝑎𝑛

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑦4
𝑦5
𝑦6

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝛼1
⋮
𝛼𝑛

⎤

⎥

⎥

⎦

(30)

where coefficients 𝑦 = (𝑦1,… , 𝑦6)⊤ are related to �⃗� by

𝑥1 = 𝑦3 𝑥4 = 𝑦6

𝑥2 =
√

𝑦21 + 𝑦
2
2 𝑥5 =

√

𝑦24 + 𝑦
5
2

𝑥3 = atan2(−𝑦2,−𝑦1) 𝑥6 = atan2(−𝑦4, 𝑦5)

Eqs. (29)–(30) are written more compactly as 𝑨1𝑦1 = 𝜖 and 𝑨2𝑦2 = �⃗�
respectively. Notably, only three measurements are required to define a
solution, which is well-suited to slow VBS measurement rates. Typical
least squares methods such as QR decomposition can be used to solve
each system and recover a target motion model in bearing angle space.
Predicted (𝛼𝑝, 𝜖𝑝)⊤𝑘 in a new image is then computed using Eq. (27) and
the observer absolute orbit estimate at that epoch.

Upon commencing a new track segment, there may be too few
measurements to fit the model. If only one prior measurement exists,
the next predicted bearing angle is simply the previous angle. If only
two prior measurements exist, the predicted bearing angle is computed
linearly via

(𝛼𝑝, 𝜖𝑝)⊤𝑘 ≈ (𝛼, 𝜖)⊤𝑘−1 + [(𝛼, 𝜖)⊤𝑘−1 − (𝛼, 𝜖)⊤𝑘−2] (31)

If a separate navigation filter is present and estimating target rel-
tive states, these estimates are leveraged to predict upcoming mea-
urements by (1) propagating filter states and covariances into the new
mage epoch, then (2) performing an unscented transform from the

ilter state space into bearing angle space [13,14].
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3.3. Measurement gating

The formation of new tracks is gated such that tracks must re-
main physically reasonable, according to the assumption of consistent
parametric motion within a track segment. SAMUS applies a set of
kinematic rules to each possible measurement-to-track association and
valid associations must pass all rules. The kinematic rules are:

1. Track velocities must be below a set maximum.
2. Track velocities must be consistent over time.
3. Tracks should generally not feature acute angles.
4. Tracks must turn in a consistent direction.
5. Assigned measurements must be close to predicted measure-

ments.

Rule 1 stems from the knowledge that target relative velocity in
the tracking frame depends on the ROE [30]. Objects in dissimilar
orbits have large ROE and proportionally large track velocities, but in
angles-only scenarios of interest [4,6–8], targets are in similar orbits to
observers. Consequently, a velocity threshold can be placed on tracks
depending on the maximum allowed swarm ROE, where for step 𝑣𝑘 it
is required that 𝑑𝑘 < 𝑑max. For a near-circular orbit in LEO, 𝑑max ≈
0.005 rad/min in the bearing angle plane allows |𝛿𝑒∕𝛿𝜆| ≤ 0.05 and
|𝛿𝑖∕𝛿𝜆| ≤ 0.05. Eccentric orbits will observe larger 𝑑𝑘 near periapsis
and high-altitude orbits will observe smaller 𝑑𝑘.

Rule 2 states that track velocities should remain relatively consistent
between images. Velocities are constant when 𝑒𝑜 = 0 and target tracks
are circular, which occurs if 𝛿𝑒 = 𝛿𝑖 and 𝛿𝒆 ∥ 𝛿𝒊. Otherwise, velocity
variations grow with track aspect ratio 𝑎𝑒∕𝑏𝑒 (Eq. (12)) and orbit
eccentricity. Two tests are applied, given by

1
𝑟max

𝑘−1
∑

𝑖=𝑘−𝑗

𝑑𝑖
𝑗
< 𝑑𝑘 < 𝑟max

𝑘−1
∑

𝑖=𝑘−𝑗

𝑑𝑖
𝑗

(32)

1
𝑟max

<
𝑑𝑘
𝑑𝑘−1

< 𝑟max (33)

These tests imply that (1) the size of the new track step must be similar
to the average step size across the previous 𝑗 epochs, and that (2) ratios
of successive step sizes must fall within an 𝑟max bound, defined by

𝑟max =
(

1 +
𝑎𝑒
2𝑏𝑒

+
10𝜎VBS
𝑑mean

)(

1 + 𝑒𝑜
)

(34)

where 𝜎VBS is the bearing angle measurement noise of the VBS (1𝜎) and
𝑑mean is the mean of 𝑑1,…,𝑘−1. Thus, 𝑟max has a minimum of 1.5 and
allows larger velocity variations with larger track aspect ratios and/or
eccentricity. The 𝜎VBS term allows for proportionally larger effects of
measurement noise when track velocity is near zero. 10𝜎VBS is used as
a limit to provide a 5𝜎 ‘buffer’ against the effects of noise on temporally
adjacent observations in a track.

Rule 3 defines a minimum angle 𝜓 between successive steps 𝑣. For
𝑎𝑒∕𝑏𝑒 ≈ 1 and 𝑒𝑜 ≈ 0, 𝜓 is obtuse with 𝜓 ≈ 𝜋. Otherwise, 𝜓 is most
acute where 𝑑𝑘 is small and most obtuse where 𝑑𝑘 is large. To match
these variations, the rule applies

𝜓𝑘 > 𝜓min (35)

𝜓min = min
( 5𝜋

6
, 5𝜋
6

𝑑𝑘
max(𝑑mean, 10𝜎VBS)

)

(1 − 𝑒𝑜) (36)

If 𝑑𝑘 is small compared to 𝑑mean or 10𝜎VBS, or the absolute orbit is
eccentric, the minimum allowed angle is more acute. The rule also
ensures 𝜓min ≤ 150◦, which relates to the maximum expected time
interval between images. Larger intervals imply fewer track steps per
orbit and thus more acute angles between steps, as per the interior
angles of an 𝑛-sided regular convex polygon; 150◦ implies a maximum
interval of 1 of the orbit period.
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12
Fig. 10. Notional illustration of an expanded maneuver error region in bearing angle
space. The expanded region is the union of original error region 𝐸 and new region 𝑊 .

Rule 4 ensures that target tracks possess consistent clockwise (or
anticlockwise) behavior, following the expected parametric form. It is
defined as

sign(𝜁𝑘 − 𝜁𝑘−1) = sign(𝜁𝑘−1 − 𝜁𝑘−2) (37)

Eccentric orbits can observe direction changes as the first- and second-
order components of relative motion constructively or destructively
interact throughout the orbit. However, these changes are periodic with
1
4 of the orbit and on the shorter timescales between images the rule
generally holds. Measurement noise can also cause violations when
track velocities are small; Rule 4 is therefore only applied if |𝜋 − 𝜓𝑘| >
𝜋
10 and 𝑑𝑘 > 10𝜎VBS.

Rule 5 guarantees that assigned measurements lie within some error
region around the predicted measurement. If a target state estimate
with covariance is available, the error region in the bearing angle plane
is obtained via an unscented transform with user-specified 𝜎-bound. If
a state estimate is unavailable, the error region 𝐸 for new measurement
(𝛼, 𝜖)⊤𝑘 is a circle centered on predicted measurement (𝛼𝑝, 𝜖𝑝)⊤𝑘 , with
radius

𝑟𝐸 = max(10𝜎VBS, 2𝑑mean)(1 + 𝑒𝑜) (38)

A modified prediction must be applied if SAMUS observes a maneuver
or a data gap because the next measurement will be affected by either
the maneuver or secular ROE drift. However, the coefficients of track
motion models in bearing angle space do not correspond exactly to
ROE — as per Eq. (1), bearing angles and the derived coefficients are
effectively normalized by target range, and as such, traditional ROE ma-
neuver or drift models (Eqs. (18), (15), (16)) cannot be quantitatively
applied. Nevertheless, qualitative effects on the next measurement can
be assessed to appropriately modify 𝐸.

It is desired for consistency to view all swarm maneuvers as a
target maneuvering relative to the observer; thus, if the maneuver is
conducted by the observer, its components are negated. RTN maneuver
components can then be rotated into the tracking frame to form 𝛿𝒗 .
As per Fig. 2, 𝛿𝑣𝑥 describes change in target relative velocity in the �̂�

or elevation direction, and 𝛿𝑣𝑦 in the �̂� or azimuth direction. When
integrated over the time interval between images, a change in relative
velocity causes change in expected relative position and bearing angle
in the new image. The post-maneuver predicted measurement (𝛼𝑚, 𝜖𝑚)⊤𝑘
is then located in some direction 𝑣𝑚,𝑘 from original prediction (𝛼𝑝, 𝜖𝑝)⊤𝑘 .
The phase in the bearing angle plane that defines 𝑣𝑚,𝑘 is 𝜃𝑚,𝑘 =
atan2(𝛿𝑣𝑦 , 𝛿𝑣𝑥 ). Fig. 10 provides an illustration. The modified error
region is the union of a 2D wedge 𝑊 − defined by 𝜃𝑚,𝑘 and (𝛼𝑝, 𝜖𝑝)⊤𝑘 −
and the original error region. Here, wedge radius 𝑟𝑊 is defined as 20%
of the FOV with arc angle 𝜃𝑊 = 𝜋

4 . The wedge must be large enough to
allow for expected maneuvers but not too large as to allow formation
of many false hypotheses. When instead resuming tracking after a data
gap, the radius of the error region is doubled but its shape is unchanged
because secular ROE changes during a single orbit are generally small.
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It is recommended to choose a measurement interval large enough
such that 𝑑mean ≫ 𝜎VBS and noise does not wrongly validate or
invalidate a large number of tracks, and small enough that sufficient
information is received for robust stepwise prediction and gating. The
authors have found that between 30–100 VBS images per orbit provides
a suitable compromise.

3.4. Measurement-to-track association

From the list of valid measurement-to-track associations, SAMUS
forms a set of valid global hypotheses. Each hypothesis is scored
to assess its potential for selection, propagation or deletion. SAMUS
employs an additive track score stemming from the kinematic rules.
A hypothesis score is the sum of scores of each constituent track in
its possible transformed frames. Consider hypothesis 𝑖, which features
𝑝 tracks (indexed by 𝑙) and 𝑝 − 1 possible transforms for each track
(indexed by 𝑚 with 𝑙 ≠ 𝑚). The hypothesis is scored across 𝑞 epochs
(indexed by 𝑘). Thus, define 𝑠𝑖,𝑗,𝑘,𝑙,𝑚, as scoring criterion 𝑗 of epoch 𝑘, for
track 𝑙 transformed with respect to track 𝑚. The total score for criterion
𝑗 of hypothesis 𝑖 is

𝑠𝑖,𝑗 =
𝑞
∑

𝑘=1

𝑝
∑

𝑙=1

𝑝−1
∑

𝑚=1
𝑠𝑖,𝑗,𝑘,𝑙,𝑚 (39)

and the final score of hypothesis 𝑖, with its component scores 𝑠𝑖,𝑗
normalized to lie within [0, 1], is

𝑠𝑖 =
∑

𝑗

𝑠𝑖,𝑗 − min𝑖(𝑠𝑖,𝑗 )
max𝑖(𝑠𝑖,𝑗 ) − min𝑖(𝑠𝑖,𝑗 )

(40)

riteria 𝑠𝑖,𝑗 assess how well tracks match kinematic expectations. For
poch 𝑡𝑘, 𝑠𝑖,𝑗 are defined as

𝑠𝑖,1 =‖𝑨1𝑦1 − 𝜖‖2 + ‖𝑨2𝑦2 − �⃗�‖2 (41)

𝑠𝑖,2 =‖(𝛼𝑝, 𝜖𝑝)⊤𝑘 − (𝛼, 𝜖)⊤𝑘 ‖2 (42)

𝑠𝑖,3 =|𝑑𝑘 − 𝑑𝑝,𝑘| (43)

𝑠𝑖,4 =|𝑑𝑘 − 𝑑mean| (44)

𝑠𝑖,5 =|𝜁𝑘 − 𝜁𝑝,𝑘| (45)

𝑠𝑖,6 =|𝜓𝑘 − 𝜓𝑝,𝑘| (46)

𝑠𝑖,7 =|𝜓𝑘 − 𝜓mean| (47)

𝑠𝑖,8 =|𝑓𝑘 − 𝑓𝑜| (48)

𝑠𝑖,9 =1∕|𝑑𝑘| (49)

𝑖,10 =1∕|𝜓𝑘| (50)

bove, 𝑠1 describes the residuals from track model fitting; 𝑠2 describes
he distance between the predicted measurement and new measure-
ent; 𝑠3 and 𝑠4 describe the difference between track step size and the
redicted and mean sizes; 𝑠5 describes the difference between track step
hase and the predicted phase; 𝑠6 and 𝑠7 describe the difference be-
ween track step angle and the predicted and mean angles; 𝑠8 describes
he difference between the new measurement parameter 𝑓𝑘 (computed
rom the previously-fitted model) and its parameter from the observer’s
bsolute orbit estimate, 𝑓𝑜; and 𝑠9 and 𝑠10 bias the track towards smaller
teps and larger step angles. The best hypothesis has the smallest score.

Typical scoring methods often apply a single Mahalanobis distance
etric between the predicted and assigned measurement for scoring.
owever, depending on the ROE and measurement frequency, target
otion across images may be comparable in magnitude to VBS noise

nd multiple targets may be in close proximity in the image plane.
single scoring metric is not robust in these cases. By using a set of
etrics 𝑠1,…,10, consensus supports the correct choice over time, even

f some criteria temporarily support incorrect hypotheses. SAMUS also
voids the need for probabilistic estimates of false alarm densities or
arget decay rates as in Eq. (20), which are not easily obtainable for
pacecraft.
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When no measurements can be assigned to a track, its predicted
measurement is used as a placeholder for propagation into future
epochs. If a track is not visible for more than 10% of the orbit (and was
expected to be visible), it is deleted. SAMUS also gives associations an
‘ambiguity’ flag in that only measurements which are unambiguously
of the target should be passed to a navigation filter, to minimize false
positives. Consider best hypothesis ℎ1 with score 𝑠1 and second-best ℎ2
with score 𝑠2. Then, if 𝑠1 < 𝐶1𝑠2, measurements in ℎ1 which have been
members of the target’s best track at least 𝐶2 epochs are unambiguous.
𝐶1 and 𝐶2 are user-specified constants. This paper applies 𝐶1 = 0.5 to
ensure ℎ1 is superior in at least twice as many criteria, and 𝐶2 = 3 as
this is the fewest measurements needed for track fitting. All hypotheses
ℎ𝑖 with scores 𝑠𝑖 < 𝐶3 are also propagated, in case they are the true
hypothesis. A maximum score of 𝐶3 = max(3, 3𝑠1) is chosen to balance
obustness and computation cost.

If an angles-only navigation filter is estimating the complete swarm
tate, Mahalanobis distance [20] is also used to score associations, as
er

𝑖,11 =
√

(𝛼 − 𝛼𝑝, 𝜖 − 𝜖𝑝)𝑘𝛴−1(𝛼 − 𝛼𝑝, 𝜖 − 𝜖𝑝)⊤𝑘 (51)

here 𝛴 is the predicted measurement covariance. To be considered
nambiguous, no other kinematically-valid (𝛼, 𝜖)⊤𝑘 may be contained
ithin the 3𝛴 region around (𝛼𝑝, 𝜖𝑝)⊤𝑘 .

.5. Maneuver-to-track association

If batches of target measurements provided by SAMUS are to be
pplied for state estimation, presence of maneuvers must be deter-
ined. Maneuvers occurring at a specific epoch must be assigned to

racks at that epoch and hypothesis compatibility and scoring must take
aneuvers into account. SAMUS assumes knowledge of the execution

imes, magnitudes, and directions of all planned swarm maneuvers, but
o knowledge of which maneuvers correspond to which targets within
AMUS. Instead, the kinematics of tracks over time must be leveraged
o determine maneuver correspondence.

In the first epoch after a maneuver, all tracks are split into two
ranches: one without a maneuver (in case the maneuver is not as-
igned to that track) and one with a maneuver (commencing a new
rack segment). If the observer maneuvers or all targets maneuver, all
racks are affected and non-maneuver branches are deleted. Assignment
f maneuvers to specific tracks is performed when four new images
fter the maneuver have been received, to ensure that enough kine-
atic information is available for a robust assessment. Within each
ypothesis, each constituent track is scored via six criteria and the
aneuver is assigned to the best-scoring (i.e. lowest-scoring) track.

Define �⃗�pre as the track model before the maneuver and �⃗�post as the
rack model after the maneuver. The observed change is 𝛥�⃗� = �⃗�post−�⃗�pre
nd a predicted change can be computed with 𝛥�⃗�𝑝 = 𝑩eroe𝛿𝒗. This
�⃗�𝑝 is not quantitatively accurate because as discussed, �⃗� represent
caled EROE and 𝑩eroe𝛿𝒗 applies to true EROE. However, qualitative
spects of 𝛥�⃗� are employed to examine consistency between predicted
nd measured changes. First, 𝛥�⃗� are normalized using

�⃗�𝑁 = 𝛥�⃗�∕max
𝑗

|𝛥�⃗�𝑗 | (52)

here 𝑗 = 1,… , 6 indexes components of 𝛥�⃗�. Subsequently, maneuver
ypothesis scores 𝑠𝑚𝑖 are computed as

𝑚
1 = ‖𝛥�⃗�𝑁𝑝 − 𝛥�⃗�𝑁‖2 (53)
𝑚
2 = |argmax

𝑗
(𝛥𝑥𝑁𝑝,𝑗 ) − argmax

𝑗
(𝛥𝑥𝑁𝑗 )| (54)

𝑚
3 =

∑

𝑗
[sign(𝛥𝑥𝑁𝑝,𝑗 ) − sign(𝛥𝑥𝑁𝑗 )] (55)

𝑚
4 = |𝜃𝑚,𝑘−3 − ∠((𝛼, 𝜖)⊤𝑘−3 − (𝛼𝑝, 𝜖𝑝)⊤𝑘−3)| (56)
𝑚 = 1∕‖𝛥�⃗�‖ (57)
5 1
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𝑠𝑚6 =
3
∑

𝑚=0

1
|(𝛼, 𝜖)⊤𝑘−𝑚 − (𝛼𝑝, 𝜖𝑝)⊤pre,𝑘−𝑚|

(58)

where 𝑘 indexes the current image epoch 𝑡𝑘 such that the maneuver
occurred between 𝑡𝑘−3 and 𝑡𝑘−4. The notation (𝛼𝑝, 𝜖𝑝)⊤pre,𝑘−𝑚 indicates a
prediction using model �⃗�pre. Above, 𝑠𝑚1 examines differences between
predicted and measured changes in the motion model; 𝑠𝑚2 examines
whether the component of 𝛥�⃗� observing the largest change was as
expected; 𝑠𝑚3 examines whether changes in 𝛥�⃗� possess the expected sign;
𝑠𝑚4 examines whether the maneuver caused the expected discrepancy
between predicted and assigned measurement; 𝑠𝑚5 biases maneuver
assignments towards tracks displaying large changes in motion; and 𝑠𝑚6
biases maneuver assignments towards tracks in which pre- and post-
maneuver models are inconsistent. Maneuvers are not assigned to a
track if motion does not change after the maneuver epoch, i.e. ‖�⃗�post −
�⃗�pre‖2 ≈ 0, because maneuver information may not always correspond
to a target in view.

Tracking may also be required for completely unknown target ma-
neuvers when observing unidentified, uncooperative, or adversarial
spacecraft. If maneuvers are small such that the kinematic rules are not
violated, and targets remain well-separated in the bearing angle plane,
SAMUS can in principle maintain tracking due to the overall robustness
of kinematic scoring. Future work will explore tracking of unknown
maneuvers in detail.

3.6. Track maintenance

To initialize new targets, SAMUS applies the DBSCAN algorithm [45]
to find clusters of unidentified measurements in the most recent four
images. A DBSCAN cluster requires at least 𝑛𝐷 points within specified
radius 𝜖𝐷. Other points are treated as noise. SAMUS aims to form
𝑛𝐷
4 new targets from each cluster and the prior gating and scoring

criteria are applied to intra-cluster tracks to compute the best cluster
hypothesis. Initialization does not require knowing the number of
targets in advance.

A SAMUS target is finalized when SAMUS is cooperating with a
navigation filter that estimates the target state, and the filter has
converged to steady-state. In this scenario, tracking is greatly simplified
because the filter is relied on to provide high-quality measurement pre-
diction, gating and scoring information. Converged state covariances
allow finalized targets to collapse into a single hypothesis for typical
formation geometries and VBS noise.

To manage hypotheses, merge similar tracks, prune poor tracks, and
limit computation costs, SAMUS employs several well-known methods
introduced in Section 2.3. Algorithm 1 in the Appendix presents a
pseudocode summary of these operations. Algorithm 2 in the Appendix
presents pseudocode for the main loop of SAMUS. Fig. 11 presents an
overview of relevant operations. When viewed as a whole, a potential
weakness of SAMUS is the relatively large number of hyperparame-
ters that affect performance. Although this paper provides suggested
values for each, best practices for tuning will be addressed in future
implementations.

4. Algorithm validation

SAMUS performance is validated across three test suites: (1) using
synthetic bearing angle measurements, (2) using synthetic VBS im-
agery, and (3) using HIL imagery produced by a star tracker. SAMUS
will also be flight-tested in 2022 aboard the NASA Starling mis-
sion as part of the ARTMS software payload. ARTMS is a complete,
autonomous, angles-only swarm navigation architecture for which
SAMUS performs target identification and data association [6,18].
Starling consists of four 6U CubeSats in LEO and its physical parameters
form the basis for each simulation. Starling CubeSats will carry Blue
Canyon Technologies Nano Star Trackers (NST) for angles-only naviga-
tion and NST parameters were applied when generating synthetic test
images, listed in Table 2. An NST was also used to collect imagery for
HIL tests. Tests were conducted on a PC with an Intel i7-7700HQ CPU
and 16GB RAM.
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Fig. 11. SAMUS algorithm summary and core sequence of operations. Dashed lines
denote steps that only occur at relevant epochs.

Table 2
Intrinsic parameters of the NST.

Intrinsic parameter Value

Image size (pixels) 1280 × 1024
FOV (◦) 12 × 10
Pixel size (μm) 5.3
Focal length (mm) 30.2
Pixel intensity range 0–255

Fig. 12. Illustration of hypothesis evolution. Track hypotheses are overlaid on super-
imposed VBS images from 𝑡 = 0 up to the specified time. Lighter track segments are
newer and considered ambiguous while darker segments are more certain.

4.1. Data generation

To generate test cases, the positions and velocities of a
four-spacecraft swarm were numerically integrated using the Stanford
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e

Fig. 13. Examples of target motion in  . Different colors represent distinct targets.
Rows 1–6 correspond to datasets NC-EIS, ECC-EIS, NC-IT, ECC-IT, EIS-MAN and IT-MAN
respectively.

Space Rendezvous Lab’s 𝑆3 software [46]. Included perturbations were
a 120 × 120 spherical harmonic gravity model, a cannonball drag
model using Harris–Priester atmospheric density, a cannonball solar
radiation pressure model with cylindrical Earth shadow, and third-
body lunisolar gravity. Spacecraft attitude was fixed such that the VBS
boresight points in the �̂� direction. For tests using synthetic bearing
angles, Gaussian white measurement noise was added to ground truth
angles with zero mean and 𝜎VBS = 20′′. Attitude noise was 𝜎off-axis =
3′′ and 𝜎roll = 20′′, considered typical for a modern CubeSat star
tracker [44,47] and verified in the HIL tests. Between 3–10 extra
measurements were added to each bearing angle set to emulate passing
satellites, debris and non-catalog stars, with positions pulled from a
uniform distribution across the FOV. Observer absolute orbit knowl-
edge was provided via a single ECI position/velocity estimate at the
start of the simulation with Gaussian white noise of 𝜎pos = 10 m and
𝜎vel = 0.02 m∕s. SAMUS propagates the estimate into subsequent epochs
via numerical integration of the Gauss Variational Equations using a 30-
second timestep and 20 × 20 gravity model. No other perturbations are
modeled by SAMUS. Maneuvers were executed with 5% (1𝜎) magnitude
error and 60′′ (1𝜎) direction error [48].

Each simulation consists of one observer tracking three targets for
two orbits. Measurements were received every two minutes. Formations
were generated from uniform distributions over the ranges of OE and
ROE in Table 3. To be consistent with earlier reasoning, limits of
𝛿𝜆∕𝛿𝑒 ≥ 20 and 𝛿𝜆∕𝛿𝑖 ≥ 20 were applied to ensure targets remain in
the FOV without any need for active camera tracking. Simulations are
categorized by three aspects: type of absolute orbit, type of relative
orbit, and inclusion of maneuvers. Absolute orbits are either near-
circular (NC) with 𝑒 ∈ [0.0001, 0.01] or eccentric (ECC) with 𝑒 ∈
[0.01, 0.8]. Relative orbits are either in-train (IT) or E/I-vector separated
(EIS). IT formations possess large differences in 𝛿𝜆 with other ROE
being approximately zero, presenting a common but constrained case
with little relative motion. EIS formations possess differences in all ROE
and thus more relative motion. IT formations are defined below by
𝛿𝜆∕𝛿𝑒 ≥ 200 and 𝛿𝜆∕𝛿𝑖 ≥ 200. Finally, some test cases include impulsive
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maneuvers (MAN) by the observer or targets. Maneuvers are generated
Table 3
OE and ROE ranges for simulations. 𝑟𝑝 is the radius of periapsis
of the orbit.

Obs. OE Range Tar. ROE Range

𝑟𝑝 (km) [6750, 7150] 𝛿𝑎 (km) [−0.2, 0.2]
𝑒 [0.0001, 0.8] 𝛿𝜆 (km) [5, 200]
𝑖 [0, 𝜋] 𝛿𝑒𝑥 (km) [−5, 5]
Ω [0, 2𝜋] 𝛿𝑒𝑦 (km) [−5, 5]
𝜔 [0, 2𝜋] 𝛿𝑖𝑥 (km) [−5, 5]
𝑀0 [0, 2𝜋] 𝛿𝑖𝑦 (km) [−5, 5]

via uniform distributions across spacecraft, execution time, direction,
and magnitude, with 0.1 ≤ |𝛿𝒗| ≤ 2 m∕s. Two maneuvers occur in
ach simulation, if included. The complete simulation set consists of:

1. 200 NC-EIS and 100 NC-EIS-MAN
2. 200 ECC-EIS and 100 ECC-EIS-MAN
3. 100 NC-IT and 50 NC-IT-MAN
4. 100 ECC-IT and 50 ECC-IT-MAN

Fig. 12 presents an example of hypothesis evolution for three targets
in an NC-EIS formation. When targets are in close proximity, many new
tracks are created. As more measurements arrive, tracks are scored and
pruned to converge to the true hypothesis. Fig. 13 presents examples
of simulated target bearing angle tracks.

4.2. Synthetic bearing angle tests

Table 4 presents Monte Carlo results for SAMUS for simulation sub-
sets: near-circular, eccentric, in-train, and E/I-vector separated (with-
out maneuvers); all simulations without maneuvers; and all simulations
with maneuvers. Performance metrics of accuracy, precision and re-
call are computed using ‘true positives’, or measurements correctly
associated with a target; ‘true negatives’, or measurements correctly
not associated with a target; ‘false positives’, or measurements incor-
rectly associated with a target; and ‘false negatives’, or measurements
incorrectly not associated with a target. Accuracy assesses overall
performance, precision focuses on reliability of associations, and recall
focuses on frequency of associations.

accuracy = TP + TN
TP + TN + FP + TN (59)

precision = TP
TP + FP (60)

recall = TP
TP + FN (61)

Precision is considered the most vital metric because angles-only orbit
determination filters are very sensitive to measurement errors and a sin-
gle false positive can cause degradation of the filter state estimate [13].
Here, an association is defined as false positive if the measurement was
produced by a different target and is more than 5𝜎VBS from the ground
truth measurement.

The ‘ALL’ row in Table 4 indicates that SAMUS data association
precision is 99.7% and false positives are minimized as desired. Despite
an emphasis on discarding ambiguous measurements, recall remains
high at 96.3% and sufficient data is retained for navigation. The metric
of ‘100% Precision Cases’ examines the proportion of tests observing
zero false positives. Perfect precision is achieved across the vast ma-
jority of formations and mean association error is on the order of
measurement noise. In comparison to the near-circular case, eccentric
orbits observe slightly diminished performance, because relative mo-
tion is more complex and unpredictable at high eccentricities and the
reliability of kinematic gating and scoring is negatively impacted. Like-
wise, In-train formations see worsened performance because targets
are in closer proximity in the image plane which increases association
ambiguity. The lower track velocities of in-train formations also make

measurement noise proportionally more significant. The addition of



Acta Astronautica 189 (2021) 514–529J. Kruger and S. D’Amico

f
n
i
a
n
p
v
i

w

n
k
o
t
e
a
b
i
c
m
a
r
r
t

a
e
e
s
r
e
c
e
m
f
a
t
n

Table 4
Monte Carlo results (1𝜎) for SAMUS for different simulation subsets.

Data Precision (%) Recall (%) Accur. (%)

NC 99.99 ± 0.06 97.12 ± 2.09 98.15 ± 1.34
ECC 99.42 ± 2.59 95.47 ± 8.25 94.85 ± 10.1
IT 99.20 ± 3.05 92.89 ± 9.63 91.99 ± 11.8
EIS 99.95 ± 0.68 97.88 ± 1.64 98.62 ± 1.14
ALL 99.71 ± 1.83 96.31 ± 6.01 96.54 ± 7.31
MAN 99.62 ± 2.14 94.90 ± 5.84 95.45 ± 9.67

Data 100% prec.
cases (%)

Mean error
(")

Runtime per
epoch (ms)

NC 98.0 25 ± 1 17 ± 5
ECC 86.0 30 ± 22 18 ± 6
IT 79.0 31 ± 25 22 ± 8
EIS 98.5 26 ± 8 15 ± 3
ALL 92.0 27 ± 16 18 ± 6
MAN 86.7 42 ± 180 18 ± 6

Table 5
Monte Carlo results (1𝜎) for different MTT algorithms across the
complete simulation set.

Method Precision (%) Recall (%) Accur. (%)

SAMUS 99.68 ± 1.93 95.86 ± 5.98 96.19 ± 8.15
GNN 80.66 ± 15.3 87.83 ± 3.76 89.78 ± 4.99
JPDA 78.79 ± 14.0 71.13 ± 7.54 88.05 ± 3.54
MHT 82.15 ± 10.4 77.21 ± 8.51 88.52 ± 4.45
PHD 89.97 ± 11.1 55.28 ± 18.9 81.98 ± 10.3

Method 100% prec.
cases (%)

Mean error
(")

Runtime per
epoch (ms)

SAMUS 90.2 32 ± 104 18 ± 6
GNN 37.0 434 ± 665 30 ± 42
JPDA 47.5 168 ± 176 90 ± 264
MHT 25.7 439 ± 475 15 ± 3
PHD 58.3 196 ± 232 50 ± 21

maneuvers decreases performance slightly because sudden changes to
target trajectories introduce short periods of significant uncertainty.
Nevertheless, the majority of maneuvers are tracked successfully and
maneuvers are assigned to targets with 95% accuracy. In summary,
SAMUS achieves the necessary performance in that precision is above
99% across all datasets and excellent consistency and accuracy are
displayed in varying conditions.

Table 5 compares SAMUS with four other common MTT algo-
rithms: GNN, JPDA, traditional MHT, and a PHD filter. Each is imple-
mented within the MATLAB Sensor Fusion and Tracking Toolbox. The
R2020a [49] version was used to generate the results in this paper.
The MATLAB algorithms were utilized to perform MTT in the bearing
angle plane with dynamics models as per Eq. (9), such that target states
consist of 2D bearing angle positions and velocities in the observer’s
tracking frame and measurements are of the target position.

SAMUS demonstrates visibly superior performance. In comparison
to the next-best algorithm (the PHD filter), it retains a 10% precision
advantage and 30% advantage in the number of 100% precision cases.
Other algorithms also display very variable performance, indicating a
relative lack of robustness. Degradation is notable, especially during
challenging eccentric or in-train scenarios, and significantly higher
standard deviations in each metric and large mean association errors
are observed. The <90% precision of GNN, MHT, JPDA and the PHD
ilter in their current form would likely be unusable for angles-only
avigation in orbit. SAMUS also demonstrates an advantage in runtime
n MATLAB, being an order of magnitude faster than traditional MHT
nd three times faster than the PHD filter. Although these runtimes are
ot optimized, it is an indication that SAMUS should not exceed com-
utational costs of other common algorithms. Computational scalability
ersus swarm size will be quantitatively studied in future when SAMUS
s implemented on a CubeSat microprocessor.

Table 6 presents SAMUS performance across the same simulation set
hen key parameters are modified: measurement noise, measurement
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Table 6
Monte Carlo results for SAMUS across all datasets when varying simulation parameters.
Default parameters are bolded.

Measurement noise std. dev. Precision (%) Recall (%) Accuracy (%)

10" 99.81 97.66 97.05
20" 99.68 95.86 96.19
40" 91.21 83.24 88.73

Measurement gap Precision (%) Recall (%) Accuracy (%)

0% 99.68 95.86 96.19
30% 99.43 87.97 94.44
60% 99.31 74.91 92.56

Measurement interval Precision (%) Recall (%) Accuracy (%)

1 min 92.73 95.34 94.07
2 min 99.68 95.86 96.19
4 min 99.34 92.10 95.89

Abs. orbit uncertainty (𝜎pos , 𝜎vel) Precision (%) Recall (%) Accuracy (%)

(10 m, 0.02 m/s) 99.68 95.86 96.19
(1 km, 2 m/s) 99.55 94.74 94.77
(10 km, 20 m/s) 99.45 93.63 93.57

Maneuver execution error (𝜎mag , 𝜎dir) Precision (%) Recall (%) Accuracy (%)

(5%, 60") 99.68 95.86 96.19
(10%, 120") 99.64 95.52 95.81
(15%, 180") 99.51 94.39 95.02

Initial 𝛿𝐱roe std. dev. (as % of 𝛿𝜆) Precision (%) Recall (%) Accuracy (%)

(0.1, 5, 0.1, . . . , 0.1) 99.91 98.93 98.15
(0.2, 10, 0.2, . . . , 0.2) 99.80 95.25 96.40
(0.4, 20, 0.4, . . . , 0.4) 95.29 81.71 91.30

Measurement input type Precision (%) Recall (%) Accuracy (%)

Synthetic angles 99.68 95.86 96.19
Synthetic images 97.18 85.33 90.31

availability, and measurement interval. Results largely follow expected
trends. Increased noise implies decreased performance because the
reliability of the parametric motion model is negatively affected. This
proves especially detrimental for in-train formations, for which 40′′ of
oise can overwhelm target velocity between images, invalidating the
inematic rules and dramatically reducing accuracy. Similar behavior
ccurs when the measurement interval is halved. The image sample
ime should thus be chosen such that target velocity is larger than
xpected noise. Conversely, lower noise improves precision and recall,
nd more frequent measurements benefits EIS formations in particular
ecause with more data, SAMUS can better predict subsequent behav-
or. VBS quality and onboard processing power are therefore important
onsiderations for MTT, in addition to formation geometry. Reduced
easurement availability impacts performance to a much lesser degree

nd SAMUS successfully handles long eclipse periods. Slightly lower
ecall is observed because periods of ambiguous tracking (e.g. when
e-initializing tracks after an eclipse) become a greater proportion of
he orbit.

Sections 4–5 of Table 6 investigate performance when quality of
-priori data is varied, in the form of the observer’s absolute orbit
stimate and discrepancy between observer maneuver knowledge and
xecuted maneuvers. SAMUS proves robust to uncertainty in the ab-
olute orbit. The orbit is primarily used to compute rotations between
eference frames and to provide data for track model fitting. Position
rrors on the order of kilometers have minimal effect on fitting ac-
uracy when compared to typical VBS noise, and a poor initial state
stimate still provides consistent motion when propagated. Similarly,
aneuver execution errors have minor effects on performance and

or the three levels of error, maneuvers are assigned with 93%–95%
ccuracy. SAMUS operates by examining the qualitative changes in
rack shape from a maneuver, and the simulated errors are generally
ot large enough to completely modify maneuver outcomes.

Usage of a-priori relative orbit knowledge is also investigated, in the
orm of cooperation with a navigation filter. In this scenario, SAMUS
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Fig. 14. Example of connected pixel clusters for an in-train formation (three targets).
uses filter relative state estimates to better identify and assign mea-
surements to targets, and the filter subsequently employs SAMUS data
associations to update its state. The angles-only unscented Kalman filter
developed by Sullivan was applied [13,14], which uses bearing angle
measurements to estimate target ROE. Section 6 of Table 6 presents
results when varying the quality of the filter state initialization, in the
form of an ROE state covariance. Target range, described by 𝛿𝜆, is the
most weakly observable ROE and initial 𝛿𝜆 uncertainty is therefore
dominant. An initial 5% 𝛿𝜆 uncertainty significantly improves tracking,
achieving near-perfect precision and recall. Conversely, an initial 20%
𝛿𝜆 uncertainty negatively impacts tracking, particularly for in-train or
intersecting formations in which the large state uncertainty leads to
multiple valid data associations. If the filter state estimate possesses
≤10% range uncertainty, SAMUS can usefully leverage this information
for enhanced performance in challenging scenarios.

4.3. Synthetic image tests

The final row of Table 6 presents results when moving to synthetic
input imagery. VBS images are generated using 3D vector graphics in
OpenGL [50]. The visual magnitudes, angles, and proper motions of SO
are obtained from the Hipparcos star catalog and any objects within the
camera FOV are rendered using Gaussian point spread functions (PSF).
Background noise is added to every pixel according to a uniform distri-
bution with intensity 𝐼 ∈ [0, 10], producing centroiding errors of ∼0.1
pixels. SAMUS processes each image to generate input measurements
for MTT. The Fast Gaussian Fitting algorithm was used for centroid-
ing [47], the Pyramid algorithm was used for star identification [43],
and the Q-method was used for attitude determination [51].

A reduction in performance is observed, especially for in-train for-
mations. Precision is lowered by 6% and recall by 17%. Overall,
29% of IT formations and 8% of EIS formations displayed at least
one false positive. This trend stems from overlapping pixel clusters in
simulated imagery when the PSF of several objects become connected
(see Fig. 14). Traditional centroiding algorithms cannot distinguish this
and consider the joined PSF to be one measurement, resulting in one
‘missing’ measurement and one inaccurate measurement that is the
average of the two. When targets are in proximity, high overlap rates
affect the ability of SAMUS to distinguish targets, or the joined PSF is
inaccurate enough to be classified as an error. It is therefore necessary
to test whether the predicted measurements of separate targets are
likely too similar to produce distinct pixel clusters and for SAMUS
to flag such associations as ambiguous. Alternatively, new centroiding
techniques have explored detecting and separating joined PSF [52] and
can be considered if in-train tracking is desired.
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Table 7
Formation configuration for HIL test.

OE Obs. ROE Tar. 1 Tar. 2 Tar. 3

𝑎 (km) 6978 𝛿𝑎 (km) 0 0 0
𝑒𝑥 0.0014 𝛿𝜆 (km) 65 133 200
𝑒𝑦 0.0014 𝛿𝑒𝑥 (km) 0 0 0
𝑖 (◦) 98 𝛿𝑒𝑦 (km) 3 2.6 1.2
Ω (◦) 40 𝛿𝑖𝑥 (km) 0 0 0
𝑢 (◦) 105 𝛿𝑖𝑦 (km) 3 2.6 1.2

4.4. Hardware-in-the-loop tests

For HIL testing, input images are retrieved from a Blue Canyon
Technologies NST as stimulated by the Stanford Space Rendezvous
Lab’s Optical Stimulator (OS). The OS is a variable-magnification
testbed consisting of two lenses and a microdisplay. A synthetic space
scene is generated in accordance with previous sections (without back-
ground noise) and shown on the OS, and by moving the two lenses
and display relative to each other, the NST is stimulated. The system
is calibrated such that the VBS image is similar in both radiosity and
geometry to what would be observed in orbit. Development, calibration
and usage of the OS is detailed by Beierle et al. [50] with achievable
errors between desired and measured bearing angles of less than
10′′. One such test is presented below, based on a proposed optical
navigation experiment [18] for the aforementioned Starling mission.
Formation OE and ROE are given in Table 7.

Fig. 15 presents the evolution of target tracks across 12 h or
approximately 8 orbits. The observed data association errors of up
to 80′′ between assigned and ground truth measurements are rea-
sonable when considering the expected error sources, which include
NST error [44], calibrated OS errors [50], and attitude determination
tolerances. Measurements are assigned to targets with 100% precision
and 98% recall. Performance is identical to the same test conducted
with entirely synthetic imagery. SAMUS is therefore able to operate on
representative camera images and flight scenarios.

5. Conclusion

This paper introduces the ‘Spacecraft Angles-only MUltitarget track-
ing System’ (SAMUS) algorithm which is able to identify and track
multiple target space objects from an observer spacecraft using only
sequential images captured by the observer’s on-board camera. SAMUS
requires coarse observer absolute orbit knowledge but no target relative
orbit knowledge, and provides angles-only multitarget tracking capabil-
ities as required for autonomous angles-only navigation of spacecraft
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Fig. 15. Example HIL image (top left), target bearing angle measurements (top right), data association errors (bottom left) and frequency of data associations (bottom right).
swarms. Tracking is maintained in near-circular and eccentric orbits
and in the presence of partially known swarm maneuvers.

In in-train and E/I-vector separated formations, SAMUS achieves
data association precision of 99.20% and 99.95% respectively and
>92% recall. Performance is maintained in the presence of expected
levels of measurement noise and large measurement gaps, and signifi-
cant improvements are demonstrated when compared to existing MTT
algorithms. If a navigation filter is estimating the swarm state, SAMUS
can apply state information to achieve 100% precision in difficult
scenarios. Camera-in-the-loop tests verify performance under realistic
conditions.

SAMUS can be extended to track spacecraft swarms at larger sepa-
rations, or swarms in other dynamic environments such as lunar or cis-
lunar space, by developing and implementing new parametric models
for target motion that include the relevant dynamics and perturbation
effects. Work is also underway to prepare a flight code implementation
for the upcoming NASA Starling mission (2022). Starling intends to be
the first ever demonstration of autonomous angles-only swarm naviga-
tion in orbit, for which SAMUS provides necessary MTT capabilities as
part of an on-board navigation software payload.
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Appendix. Algorithm pseudocode

Algorithm 1 takes as input the set of all hypotheses which were
propagated into the current epoch. It applies various criteria to trim
unlikely hypotheses and merge similar hypotheses. The output is a
reduced and more efficient set of hypotheses.

Algorithm 2 takes as input the set of existing hypotheses and a
new VBS image. It processes the image to obtain new bearing angle
measurements; propagates existing tracks using the new measurements;
527
Algorithm 1: Track maintenance algorithm.
Data: Propagated hypotheses
Result: Pruned hypotheses
if 𝑛targets > 𝑛targets,max then

keep best 𝑛targets, max targets
get score 𝑠1 of best hypothesis ℎ1
for all hypotheses ℎ𝑖 do

get 𝑠𝑖
if 𝑠𝑖 > 𝐶3 then

delete tracks existing in ℎ𝑖 only

for all targets 𝑇𝑗 do
N-scan pruning with 𝑁 = 8
for all tracks 𝑡𝑚, 𝑡𝑛 ∈ 𝑇𝑗 do

if unobserved in ≥ 10% of visible period then
delete track

if ambiguous for ≥ 50% of visible period then
delete track

if 𝑡𝑚 = 𝑡𝑛 ∀ epochs 𝑘 ∈ [0, 𝑁 − 1] then
keep best of {𝑡𝑚, 𝑡𝑛}

if 𝑡𝑚 ≠ 𝑡𝑛 ∀ epochs 𝑘 ∈ [0, 𝑁 − 1] then
keep best of {𝑡𝑚, 𝑡𝑛}

if 𝑛tracks > 𝑛tracks,max then
keep best 𝑛tracks, max tracks

delete existing global hypotheses
cluster remaining tracks
re-form global hypotheses

and initializes new tracks. The output is an updated set of hypotheses
and a chosen best hypothesis.
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Algorithm 2: Track propagation algorithm.
Data: Existing hypotheses and new image
esult: Updated best hypothesis
et image from sensor
et absolute orbit estimate from satellite bus
erform image centroiding
erform star identification
erform attitude determination
otate unidentified angles into tracking frame
f relative orbit estimates exist then

compute predicted angles and covariances
if relative orbit estimates are new then

initialize new targets

declare new list of propagated tracks 𝑡all
for existing tracks 𝑡𝑚 do

for valid transforms 𝑡𝑛 do
fit motion model to track
predict new measurement
for new measurements 𝑚𝑘 do

create new track 𝑡new from 𝑡𝑚 and 𝑚𝑘
apply kinematic gating rules
if rules passed then

add 𝑡new to 𝑡all

form compatible hypotheses ℎ𝑖 from 𝑡all
or hypotheses ℎ𝑖 do

compute score 𝑠𝑖 using kinematic criteria
get score 𝑠1 of best hypothesis ℎ1
initialize 𝑛hyp = 1
initialize new list of tracks to keep 𝑡keep
for hypotheses ℎ𝑖 do

if 𝑠𝑖 < 𝐶3 then
add 𝑡all ∩ ℎ𝑖 to 𝑡keep
𝑛hyp += 1

if 𝑛hyp > 6 then
break

if maneuvers occurred at epoch 𝑘 − 3 then
for hypotheses ℎ𝑖 do

score maneuver assignments for 𝑡𝑚 ∈ ℎ𝑖
assign compatible maneuvers to 𝑡𝑚 ∈ ℎ𝑖

for targets 𝑇𝑗 do
if measurement assigned then

store propagated tracks 𝑡keep ∩ 𝑇𝑗
else

propagate 𝑡all ∩ 𝑇𝑗 from epoch 𝑘 − 1 using predicted
measurement

update ambiguity flags
run DBSCAN on remaining unidentified angles
if clusters found then

apply kinematic gating rules
initialize valid new targets

do track maintenance as per Algorithm 1
pass ℎ1 to output
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