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Abstract—This paper presents and demonstrates an algorithmic
framework for autonomous navigation of spacecraft swarms
around planetary bodies, using angles-only measurements from
onboard cameras. Angles-only methods are compelling as they
reduce reliance on external measurement sources. However,
prior demonstrations have faced limitations, including 1) inabil-
ity to treat more than one observer and target in a swarm, 2)
lack of autonomy and reliance on external state information,
and 3) treatment of only Earth-orbit scenarios. The new Ab-
solute and Relative Trajectory Measurement System (ARTMS)
overcomes these challenges and consists of three core modules
leveraging novel algorithms: Image Processing, which tracks
and identifies targets in images and computes their bearing an-
gles; Batch Orbit Determination, which computes a swarm state
initialization from angles-only measurements; and Sequential
Orbit Determination, which uses an unscented Kalman filter to
refine the swarm state estimate, seamlessly fusing measurements
from multiple observers to achieve the autonomy, robustness
and distribution needed for deep space navigation. Theoretical
performance of ARTMS is investigated through a quantitative
observability analysis of multi-observer angles-only navigation
in Mars orbit. For swarms of at least 3 spacecraft and at least 2
observers, the complete swarm state is observable. After two
orbits, the absolute orbit is estimated to within 1 km, target
ranges are estimated to within 0.5%, and other relative state
components are estimated to 0.02% of target range. Clock
offsets are estimated to within 0.05s. These accuracies are val-
idated with camera-in-the-loop simulations of a four-spacecraft
swarm taking distributed measurements in an eccentric Mars
orbit. ARTMS displays robust navigation across a variety of
formations and under challenging conditions, and achieves the
necessary performance to support the proposed objectives.
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1. INTRODUCTION

DISTRIBUTED space systems and spacecraft swarms in
particular can offer many advantages when compared

to traditional monolithic spacecraft, including improved ac-
curacy, coverage, flexibility, robustness, and the ability to
achieve entirely new scientific objectives [1]. In recent years,
this has been evidenced by a variety of Earth-orbiting mis-
sions such as GRACE (NASA), TanDEM-X (DLR) and MMS
(NASA), which have employed multiple cooperative satel-
lites with great success [2] [3] [4]. Subsequently, there has
been strong interest in the application of distributed systems
for space exploration and in deep space environments. Of
special interest is the use of nanosatellite technology, with the
aim of leveraging miniaturized hardware to achieve ambitious
performance at reduced cost. Proposed deep space mis-
sions that demonstrate these aspects include the Autonomous
Nanosatellite Swarming (ANS) mission concept, which aims
to characterize an asteroid using a swarm of CubeSats [5], and
the NASA Starling program, which has suggested applying
CubeSat swarms for lunar exploration, communications and
monitoring [6]. Proposed Earth-orbiting CubeSat swarm
missions include the Space Weather Atmospheric Recon-
figurable Multiscale Experiment (SWARM-EX), which will
study the ionosphere and thermosphere [7], and the VIrtual
Super Optics Reconfigurable Swarm (VISORS), which will
implement a distributed solar telescope [8].

Nevertheless, the navigation of swarms in deep space presents
significant technological challenges. Current swarm missions
generally rely on Global Navigation Satellite System (GNSS)
availability or frequent ground contacts for navigation. In
contrast, swarms in deep space must aim to navigate with
a high degree of autonomy, using only onboard resources.
A promising solution in this regard is spaceborne angles-
only navigation, in which observer satellites measure bear-
ing angles to fellow swarm members via onboard Vision-
Based Sensors (VBS). Cameras are passive, robust, low size-
weight-power-cost sensors already present on the majority of
spacecraft, conducive to both accurate navigation and swarm
miniaturization. They also offer high dynamic range and are
applicable to swarms operating at inter-spacecraft separations
from several kilometers to several thousand kilometers. Fig-
ure 1 presents an example of a VBS image.

As documented in literature, two prior flight experiments
have demonstrated angles-only navigation in orbit. In 2012,
the Advanced Rendezvous using GPS and Optical Naviga-
tion (ARGON) experiment enabled the rendezvous of two
smallsats in low Earth orbit (LEO) from inter-satellite sep-
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Figure 1. A synthetic space scene imaged by a a CubeSat
star tracker, including classifications of visible point sources.

arations of 30km to 3km [9]. This was followed by the
Autonomous Vision Approach Navigation and Target Iden-
tification (AVANTI) experiment in 2016, which similarly
conducted a rendezvous of two smallsats from separations of
13km to 50m [10] [11]. While these demonstrations were
successful, they are characterized by four key deficiencies
that must be overcome to meet the needs of future swarm
missions: 1) inability to accommodate multiple observers
and multiple targets, 2) lack of autonomy and reliance on
accurate a-priori relative orbit information, 3) reliance on
external knowledge of the observer’s absolute orbit, and 4)
reliance on frequent translational maneuvers to resolve the
weakly observable target range. There exists more sophisti-
cated algorithms for individual navigation tasks such as target
detection and tracking [12], initial relative orbit determination
[13] [14], and sequential filtering [15], but these approaches
suffer from a subset of the aforementioned limitations or are
otherwise unsuitable for spaceborne angles-only navigation
and its associated constraints. Such constraints include low
measurement frequencies (e.g. minutes between images),
frequent measurement gaps when spacecraft are in eclipse,
limited onboard computational resources, and a need for high
robustness for risk-averse flight applications.

To overcome these limitations and enable future swarm mis-
sions in deep space, Stanford’s Space Rendezvous Laboratory
(or SLAB) has proposed the Absolute and Relative Trajectory
Measurement System (ARTMS) [16] [17]. ARTMS is a
self-contained software payload that provides distributed, au-
tonomous angles-only navigation for spacecraft swarms op-
erating in any planetary orbit regime. It is divided into three
modules based on angles-only algorithms recently developed
at SLAB: image processing [18], batch orbit determination
[19], and sequential orbit determination [16]. Each module
operates with minimal a-priori information and applies ab-
solute and relative state knowledge as it becomes available.
ARTMS also exploits sharing of measurements over an inter-
satellite link (ISL) to enable use of multiple observers for
navigation. Overall, ARTMS provides orbit estimates for the
host spacecraft and each target detected by its onboard VBS,
as long as each swarm observer is provided with an estimate
of its absolute orbit at a single epoch. The only hardware
requirements posed on an observer by ARTMS are that it
must possess a VBS and an ISL.

ARTMS will initially be flight tested in LEO by the Starling
Formation-flying Optical eXperiment (StarFOX), which is
part of the Starling technology demonstration mission under
development at NASA Ames Research Center [6]. Its ap-
plicability to deep space has also been studied as part of a

collaboration between SLAB and the NASA Jet Propulsion
Laboratory. An example of a new mission concept enabled
by ARTMS is a swarm of CubeSats taking distributed mea-
surements of Mars’ atmosphere, thermosphere, ionospheric
plasmas, and transient magnetic fields. Such a swarm could
be deployed from a primary spacecraft to enable greatly
enhanced science return at minimal additional cost. Angles-
only navigation can also be applied in secondary fashion −
for instance, as a secondary navigation system for pairs of
small satellites taking interferometric synthetic aperture radar
(SAR) measurements of the Martian surface, or in the form of
a swarm of CubeSats that provide an external orbit estimate
for a larger, Mars-orbiting flagship spacecraft.

In light of these potential applications, this paper discusses
the ARTMS architecture for autonomous, multi-observer
angles-only navigation of spacecraft swarms around plane-
tary bodies. Three primary contributions to the state of the
art are presented. First, the ARTMS architecture and its
algorithms are described, with a focus on the new capabilities
necessary to enable deep space navigation and swarm mission
concepts. This includes new multi-observer measurement as-
signment algorithms and estimation of clock offsets between
swarm observers using angles-only measurements. Second, a
quantitative observability analysis of multi-observer angles-
only navigation in Mars orbit is presented, via computation
of the estimated state covariance using a measurement noise
matrix (representative of expected sensor performance) and
a measurement sensitivity matrix across all measurement
epochs. This analysis indicates that both absolute and rela-
tive swarm orbit determination can be achieved using inter-
satellite angles-only measurements. Third, the estimation ac-
curacies from the observability analysis are validated through
simulations of angles-only navigation in Mars orbit using
ARTMS. An example Mars swarm science mission is de-
veloped, enabled by purely angles-only navigation. Camera-
in-the-loop simulations of representative navigation scenarios
demonstrate sufficient navigation accuracy and robustness to
achieve the stated science goals under challenging measure-
ment conditions. ARTMS is therefore considered a promising
solution for missions aiming to apply spacecraft swarms in
deep space environments.

The paper is organised as follows. After this introduction,
Section 2 presents mathematical background in regards to the
swarm measurement model, dynamics model, and estimated
state. Section 3 describes operational considerations for
swarm navigation in deep space, with reference to potential
mission applications. Section 4 introduces the ARTMS
architecture and the algorithms necessary to enable robust,
autonomous navigation in deep space. Section 5 presents the
swarm observability analysis and relevant results. Section
6 details the simulated Mars mission and data generation
pipeline, along with a discussion of results. Section 7 con-
tains concluding remarks.

2. MODELLING PRELIMINARIES
Measurement Model

The ARTMS payload produces angles-only measurements by
computing the time-tagged bearing angles to objects detected
in VBS images. First, define the radial/along-track/cross-
track (RTN) frame of the observer, denoted R. It is centered
on and rotates with the observer and consists of orthogonal
basis vectors x̂R (directed along the observer’s absolute posi-
tion vector); ẑR (directed along the observer’s orbital angular
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momentum vector); and ŷR = ẑR × x̂R [20]. Similarly,
define a frame W using ŷW (directed along the observer’s
velocity vector); ẑW = ẑR; and x̂W = ŷW × ẑW . W only
differs from R by a rotation of the observer flight path angle
φf about ẑR with φf ≈ 0 in near-circular orbits [20].

Bearing angles consist of azimuth and elevation (α, ε) and
subtend the line-of-sight vector δrV = (δrVx , δr

V
y , δr

V
z ) from

the observer to the target. Superscript V indicates description
in the observer VBS coordinate frame, consisting of orthogo-
nal basis vectors x̂V , ŷV , ẑV . Without loss of generality, this
paper assumes a camera with boresight ẑV aligned with±ŷW
(as appropriate), ŷV aligned with ẑW , and ẑV = x̂V × ŷV .
Bearing angles are then computed via [21](

α
ε

)V
=

(
arcsin δrVy /||δrV ||2

arctan δrVx /δr
V
z

)
(1)

Bearing angles can be related to the inertial frame by rotating
δrV into the Planet-Centered Inertial (PCI) frame P , as per

δrP = V−→RPδrV (2)

where V
−→
RP denotes a rotation from frame V into frame

P . This rotation matrix is computed by performing atti-
tude determination using stars identified by the VBS [9].
Rotation matrices R

−→
RP and W

−→
RP can be computed using

the observer’s absolute orbit estimate. Figure 2 depicts the
relationship between coordinate frames and bearing angles.

Figure 2. Definition of the target line-of-sight vector and
bearing angles with respect to V,R andW . Here, the VBS

points in the anti-velocity direction.

State Parametrization

ARTMS represents the absolute state α of the observer in
terms of quasi-nonsingular orbit elements (OE), with

α =


a
ex
ey
i
Ω
u

 =


a

e cosω
e sinω
i
Ω

ω +M

 (3)

Above, a, e, i,Ω, ω and M are the canonical Keplerian OE
of semi-major axis, eccentricity, inclination, right ascension
of the ascending node, argument of periapsis, and mean
anomaly respectively, and u is the mean argument of latitude.
All are computed with respect to P . Fully nonsingular OE
have also been defined for equatorial orbits [20].

The relative orbit δα of a target spacecraft, as tracked by
an observer, is described by the quasi-nonsingular relative
orbit elements (ROE) [22]. The ROE state parametrization
is defined in terms of the absolute OE of the observer and
target (denoted by subscripts ‘o’ and ‘t’ respectively) via

δα =


δa
δλ
δex
δey
δix
δiy

 =


(at − ao)/ao

(ut − uo) + (Ωt − Ωo) cos io
ex,t − ex,o
ey,t − ey,o
it − io

(Ωt − Ωo) sin io

 (4)

Above, δa is the relative semi-major axis, δλ is the relative
mean longitude, δe = (δex, δey) is the relative eccentricity
vector with magnitude δe and phase φ, and δi = (δix, δiy) is
the relative inclination vector with magnitude δi and phase θ.
Fully nonsingular ROE have also been defined for equatorial
orbits [23].

The ARTMS state also includes several optional components.
First are absolute empirical accelerations for the observer and
differential empirical accelerations for targets, defined as

aRemp =

(
ax
ay
az

)R
(5)

δaRemp =

(
δax
δay
δaz

)R
=

(
ax,t − ax,o
ay,t − ay,o
az,t − az,o

)R
(6)

respectively in R. Empirical accelerations are used to
approximately capture unmodeled dynamics, and are more
computationally efficient than numerically integrating the full
differential equations of relative motion [21]. Other optional
state components are the absolute clock errors and clock drift
rates of the observer, and differential clock offsets and clock
drift rates of targets with respect to the observer, defined as

cerr =

(
cerr
derr

)
(7)

δcerr =

(
δcerr
δderr

)
=

(
cerr,t − cerr,o
derr,t − derr,o

)
(8)

Above, cerr is a clock offset and derr is a clock drift rate. For
n detected targets, the complete ARTMS state is therefore

x = (α,a, c, δα1, δa1, δc1, ..., δαn, δan, δcn) (9)

Additional state components − such as VBS sensor biases
or spacecraft ballistic properties − can also be estimated by
ARTMS [16] but are not included here.

Dynamics Model

ARTMS propagates the absolute orbits of observer and target
spacecraft using numerical integration of the Gauss Varia-
tional Equations (GVE). For state α, the osculating OE of
each spacecraft evolve according to

α̇ = G(α)dR (10)

where G ∈ R6×3 is the well-documented GVE state tran-
sition matrix [24] and dR is the perturbing acceleration
expressed inR. Depending on the orbit regime, common per-
turbations are spherical harmonic gravity, atmospheric drag,
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third-body gravity and solar radiation pressure. Analytic
dynamics models for the mean OE which include the effects
of J2 and J3 gravity perturbations are alternately used when
computational efficiency is paramount. J2 causes secular
drifts in M , ω and Ω [25] while J3 causes long-periodic
changes in e, i, ω and Ω [26]. Analytic models including
common perturbations are also available for ROE [23] [27].

A particularly useful aspect of ROE is that they provide ge-
ometric intuition regarding target relative motion. As shown
in [22] for near-circular orbits, there is a linear map between
the ROE and the target’s curvilinear position vector δr in the
observer’s RTN frame

δr =

[
δrR
δrT
δrN

]
≈ ao

[
δa− δe cos(uo − φ)
δλ+ 2δe sin(uo − φ)

δi sin(uo − θ)

]
(11)

The near-circular case was extended to eccentric or-
bits [21] by defining the eccentric ROE δα∗ =
(δa, δλ∗, δe∗x, δe

∗
y, δix, δiy). The eccentric ROE revert to

traditional ROE for eo ≈ 0. The resulting map is

δr≈ ro


δa− eo

2 δe
∗
x−δe∗

(
cos(fo−φ∗)+ eo

2 cos(2fo−φ∗)
)

δλ∗+δe∗
(

2 sin(fo−φ∗)+ eo
2 sin(2fo−φ∗)

)
δisin (fo+ωo−θ)


(12)

Figure 3 presents relative motion in RTN for small separa-
tions. Oscillatory motion produced by target relative orbits is
shown in black, possessing the same frequency as the orbit.
Oscillatory motion produced by orbit eccentricity is shown in
red, acting at twice the frequency of the orbit. δa and δλ∗
capture mean offsets in the radial and along-track directions
respectively; magnitudes of δe∗ and δi correspond to magni-
tudes of oscillations in the RT and RN planes respectively;
and phases of δe∗ and δi dictate the orientation and aspect
ratio of the tilted ellipse in the RN plane. The eccentricity
of the observer’s orbit superimposes additional offsets and
higher-frequency oscillations in the RT and RN planes.

Figure 3. Target relative motion in the x̂R-ŷR (RT) and
x̂R-ẑR (RN) planes. Motion that is first-order in spacecraft
separation is in black. Contributions proportional to e are in

red [16].

Clock offsets are propagated within ARTMS using a simple
model defined by

ċerr =

[
0 Ts
0 0

]
cerr (13)

where Ts is the propagation timestep.

3. OPERATIONAL CONSIDERATIONS
In comparison to prior angles-only architectures focusing
on single observers and targets, the extension to spacecraft
swarms requires new capabilities − as does the extension
from Earth orbit to deep space. When introducing ARTMS, it
is thus useful to consider the types of multi-satellite mission
which are enabled by angles-only navigation and the resulting
operational constraints or requirements that must be met.

Consider angles-only as the primary navigation method for
a swarm science mission, taking cooperative, distributed or
repeating measurements at varying scales impossible with
a single spacecraft. Example objectives include solar wind
measurements [6] or characterization of planetary atmo-
spheres [7]. Pure angles-only navigation may not be suf-
ficient for objectives requiring extremely accurate position
knowledge, such as planetary interferometric SAR mapping
[3]. However, it can still be used to support the mission in
a secondary fashion, such as during low power modes or
formation acquisition. Furthermore, angles-only techniques
can be leveraged to support a larger, flagship spacecraft
via ‘navigation buddies’, i.e. a swarm of small satellites
deployed from the flagship to provide real-time absolute
orbit determination in a cooperative manner. This swarm
could even carry science instruments itself. More ambitious
scales can also be explored. Consider a planetary navigation
service, in which a constellation of small satellites broadcasts
its positions as autonomously determined on-board using
angles-only navigation. This information can then be used
for position triangulation by other ground-based or orbiting
assets. Such a system could be used to support future Mars
exploration efforts with lower costs (but also lower accuracy)
than a traditional GNSS system.

In view of these examples, there are three broad operational
capabilities the angles-only system must possess. First is
distribution, in that the architecture should be capable of
navigation for arbitrary numbers of swarm observers and
targets, and take advantage of distributed or decentralized
operation to improve overall reliability, flexibility and scal-
ability. This relates to a primary driver behind the adoption
of swarm-based concepts and spacecraft miniaturization, i.e.
the potential for groups of small satellites to achieve enhanced
capabilities at lower cost and on faster timelines [1]. Thus, the
architecture should also rely on hardware suitable for small
satellites or nanosatellites in regards to sensing, communi-
cations bandwidth, and processing power. This is supported
by the use of VBS, which are cheap, low mass, low power
systems. In comparison, the efficacy of (for example) inter-
satellite ranging is potentially limited for nanosatellites.

Second, there is a preference for autonomy and navigation
using only onboard sensors and resources. Traditionally, deep
space navigation has relied on external frameworks such as
the NASA Deep Space Network (DSN). However, the in-
creasing number of interplanetary spacecraft has placed strain
on these capabilities − strict scheduling is already necessary
to ensure timely DSN navigation solutions [28]. If in future,
individual swarm members require DSN contact, navigation
rapidly becomes inefficient or untenable. Swarm navigation
methods should therefore require minimal ground contact in
the sense of being self-initializing and self-sustaining. Exist-
ing angles-only architectures have not achieved this, requir-
ing accurate a-priori relative orbit information for navigation
initialization and regular external absolute orbit updates to
maintain state convergence [9] [10] [16]. Furthermore, if
ground updates are sparse, it becomes necessary to estimate
additional state components such as the clock errors of swarm
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observers, which is untreated by prior work in this field.

Third, navigation must guarantee high robustness, especially
for interplanetary missions incurring significant investment.
From a hardware perspective, VBS solutions are again attrac-
tive because cameras are simple, passive, robust and accurate.
However, robustness of estimation is challenging. Prior work
has shown that bearing angle measurements from a single
observer do not distinguish between a change in the mean
argument of latitude (u) of the observer and the relative
mean longitude (δλ) of a target, creating an unobservable
mode and gradual state divergence [19]. Furthermore, such
methods have displayed weak observability because bearing
angles do not contain explicit target range information [29]
[30]. It has been suggested to use translational maneuvers
to disambiguate target range, but this limits mission lifetime
from associated propellant use and increases complexity by
requiring maneuver plans. More broadly, navigation should
also be robust to errors in the state estimate or a-priori
information, and agnostic to swarm orbit geometries and the
specific planetary dynamic environment.

4. ARTMS ARCHITECTURE
In response to these considerations, a novel navigation archi-
tecture has been developed by Stanford’s SLAB. “ARTMS” is
a self-contained software payload that provides autonomous,
distributed angles-only navigation for spacecraft swarms in
planetary orbit regimes [16] [17]. To describe its structure,
the following terminologies are adopted. The “observer”
refers to the spacecraft hosting the instance of ARTMS being
discussed. A “remote observer” is another spacecraft hosting
an ARTMS payload that is providing measurements over the
ISL. The “swarm” consists of all observers and all other
relevant “targets”, which are space objects tracked by the
observers. Observers might only track a subset of the swarm
and often, the targets tracked by an observer will include one
or more remote observers. Figure 4 presents an example.

Figure 4. Illustration of ARTMS observers and targets.

A high-level overview of ARTMS is shown in Figure 5.
It consists of of three core software modules: IMage Pro-
cessing (IMP), Batch Orbit Determination (BOD) and Se-
quential Orbit Determination (SOD). Data sources are the
VBS, which provides time-tagged images to ARTMS; the
ISL, which communicates orbit estimates and bearing angle
measurements between all swarm observers; the spacecraft
bus, which provides additional attitude information; and the
ground segment, which provides telecommands and receives
telemetry from ARTMS instances. In this paper, it is assumed
GNSS measurements are unavailable.

Operation of each module is briefly described as follows.
First, the IMP module uses images from the VBS to produce
batches of bearing angle measurements with corresponding

uncertainties for all detected targets in the field of view
(FOV). The only prior information needed by IMP is a coarse
estimate of the observer’s absolute orbit at a single epoch,
provided by a source such as the DSN. IMP measurement
batches are provided to BOD and SOD. The BOD module
uses the IMP angle batches, as well as the aforementioned
estimate of the observer’s orbit, to compute state estimates
for all spacecraft in the local swarm (including itself and all
targets observed by the VBS). This state estimate is provided
to the SOD module for initialization and fault detection. The
SOD module uses the BOD state estimate to initialize an
unscented Kalman filter (UKF), which fuses measurements
from IMP and remote ISL observers to refine the orbit esti-
mates of all spacecraft in the local swarm (as well as auxiliary
parameters such as ballistic coefficients or differential clock
offsets). State updates from known maneuvers are applied
if necessary. SOD then provides updated state estimates to
IMP to more efficiently assign bearing angles in new images
to existing targets. The orbit estimate and bearing angles
are also sent to the ISL. Sample times are on the order of
minutes for IMP and the VBS (dependent on orbit period, to
provide approximately 50-100 measurements per orbit), once
per orbit for BOD, and one minute for SOD.

Algorithms are scalable to arbitrary numbers of observers and
targets, and navigation is distributed between observers via
sharing of measurements and state estimates over the ISL.
The three modules also operate with essentially no support
from ground-based resources. As described in the following
sections in more detail, IMP applies novel data association
algorithms, in concert with BOD estimation algorithms, to
self-initialize navigation using a single external absolute or-
bit measurement per observer. Modules subsequently take
advantage of additional information as it becomes available
to enable near-total autonomy. Of particular importance, with
respect to prior work, is the application of multiple observers.
SOD employs new algorithms to match measurements from
different observers to corresponding targets, and the resulting
stereo measurements greatly improve state estimate robust-
ness, convergence and accuracy. Unobservable modes are
removed and it becomes easier to disambiguate target range.
ARTMS is then able to estimate the swarm’s absolute and
relative orbits with exclusively bearing angles, eliminating
reliance on maneuvers and external measurement sources.
Detailed descriptions of IMP, BOD and SOD algorithms are
also available in [18], [19] and [16] respectively.

Image Processing

The objective of IMP is to produce batches of time-tagged
bearing angle measurements to each target using a coarse
estimate of the observer’s orbit and images provided by the
onboard VBS. This is accomplished in two phases. First,
each incoming image is processed and reduced to a set of
inertial bearing angles that may correspond to resident space
objects. Second, these candidate bearing angles are used to
track known targets and detect new targets using an approach
inspired by multi-hypothesis tracking (MHT) [12].

The first phase of IMP uses a set of well-known algorithms.
First, a centroiding algorithm is used to simplify the raw
image into a list of pixel cluster centroids [31]. Second,
these centroids are converted to unit vectors in the sensor
frame using the calibrated sensor model. Next, the pyramid
star identification algorithm [32] is applied to remove stellar
objects (SO) from the list of pointing vectors. Uncatalogued
SO are detected by considering objects with unchanging iner-
tial unit vectors between images. Similarly, camera hotspots
are removed by considering objects with unchanging pixel

5



Figure 5. Architecture of the ARTMS payload including external systems/data sources (dark gray), software modules
(green), and exchanged data (blue). The GNSS inputs (when available) and ground inputs are are provided to all modules; the

telemetry output consists of all modules’ data outputs.

coordinates. The VBS attitude is computed from the pointing
vectors to identified stars in the inertial and sensor frames
using the q-method [33]. The remaining minimal set of
inertial unit vectors likely corresponds to known targets or
other unknown objects in the FOV.

In the second phase, measurements must be assigned to
targets currently being tracked or used to initialize new tar-
gets, without requiring a-priori relative orbit knowledge. To
accomplish this, IMP employs the new Spacecraft Angles-
only MUltitarget tracking System (SAMUS) algorithm [18],
which has two key requirements: 1) a coarse estimate of
the observer’s absolute orbit is provided, and 2) targets do
not perform large translational maneuvers during the tracking
period. SAMUS has been designed to meet the constraints
of angles-only navigation in space, i.e. to achieve close to
100% measurement assignment precision with low measure-
ment frequencies and limited computational resources. It
applies the core concept of MHT in that as measurements
arrive, several simultaneous hypotheses are maintained for
their association into target tracks. The algorithm converges
towards the correct hypothesis over time. MHT is chosen
as a basis because it is mature and demonstrably accurate,
with its primary disadvantage being the need to frequently
and heuristically trim hypotheses for real-time computation
[34]. To overcome this, SAMUS applies domain-specific
knowledge to develop precise trimming criteria.

These criteria stem from Equation 12, which defines a map-
ping between the target’s curvilinear position vector in RTN
and its eccentric ROE. In this mapping, note that true anomaly
fo is the only quickly-varying term. Other terms, as defined
by the OE and ROE, vary slowly in the presence of pertur-
bations such as spherical harmonic gravity and atmospheric
drag [22]. In most angles-only scenarios of interest, swarm
members are in relatively close proximity in inertial space
and are affected similarly by perturbations. By synchronously
differencing the measured unit vectors of different targets

in RTN − in essence, using one target’s track as a virtual,
moving origin for another − perturbation effects are approx-
imately cancelled between targets. After this transformation,
all terms in the model of Equation 12 other than fo can
be considered constant on the timescale of image-to-image
tracking. Thus, target motion is periodic with known form
and parameter fo. Even if specific ROE are unknown, this
expectation can be leveraged to assess hypotheses.

First, the Equation 12 model can be fitted to measurement
tracks, and used to assess goodness of fit and predict upcom-
ing measurements. Given i = 1, ..., n past bearing angles in a
track, Equation 12 can be rearranged into a pair of separable
linear systems in azimuth and elevation, via [18]x1,1 x1,2 x1,3

...
...

...
xn,1 xn,2 xn,3


y1

y2

y3

 =

ε1...
εn

 (14)

x1,4 x1,5 x1,6
...

...
...

xn,4 xn,5 xn,6

[y4
y5
y6

]
=

α1
...
αn

 (15)

The xi,j values are computed using the one-off observer abso-
lute orbit estimate, propagated into each measurement epoch
using the analytic ARTMS dynamics model. The unknown yj
terms are scaled ROE equivalents in bearing angle space and
can be solved for via least squares as long as at least three past
measurements exist. Subsequently, upcoming measurements
in a new image can be predicted.

Second, a set of kinematic rules can be derived from Equation
12 to assess which hypotheses are physically reasonable.
Only tracks which pass all rules are propagated. Briefly, the
rules are summarised as:

1. Track velocities must be below a set maximum
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2. Track velocities must be consistent over time
3. Tracks should generally not feature acute angles
4. Tracks should turn in a consistent direction
5. New data must be close to the predicted measurement

Their application increases efficiency of MHT by preventing
formation of unlikely tracks. Mathematical definitions for
these rules are provided in [18]. When multiple tracks pass
all rules, SAMUS scores propagated tracks via ten criteria,
which assess how well each track fulfils the expectations of
Equation 12 and prior motion. In contrast to traditional MHT
methods−which often rely on a single Mahalanobis distance
metric for scoring, or probabilistic estimates− SAMUS aims
to be more robust and definitive. Often, target tracks intersect
or are in proximity in the image plane, or motion between
images is on the order of VBS noise, and a single metric
may temporarily support an incorrect hypothesis. By using
a larger set, consensus supports the correct choice over time.

To initialize new tracks, SAMUS employs the Density-Based
Spatial Clustering of Applications with Noise (DBSCAN)
algorithm [35]. DBSCAN clusters require ≥ nD points
within small radius εD. Because targets are in similar orbits
to observers, their velocities compared to other objects in
the FOV are low [10]. Previously untracked targets are
initialized by applying DBSCAN to the set of unidentified
measurements from the past several images, and applying the
SAMUS kinematic rules to found clusters. Finally, given the
use of visual measurements, tracking is often interrupted by
orbit eclipse periods. To connect shorter tracks on either side
of an eclipse, the fit of Equation 14 − 15 is computed for
every possible pair of tracks. The combination of compatible
pairs which produces the least fitting residuals is chosen.
Figure 6 presents an overview of core SAMUS operations.

Figure 6. SAMUS algorithm summary and core sequence
of operations. Dashed lines denote steps that only occur at

relevant epochs.

SAMUS is also able to cooperate with SOD and apply target
state knowledge, if available. SOD state estimates are prop-
agated into the current epoch, and an unscented transform is
used to compute target measurements and associated covari-
ance regions. The kinematic rules are replaced by a validity
region based on this predicted measurement and covariance,
and the Mahalanobis distance between predicted and assigned
measurement is employed for track scoring. In this mode,
maneuvering targets can be tracked by IMP.

Batch Orbit Determination

The BOD module must produce orbit estimates for the swarm
with sufficient accuracy to initialize the SOD module, using
only a single coarse estimate of the observer orbit and batches
of bearing angles to each target from the onboard sensor.
Typical measurement collection periods are 1-2 orbits. State
estimation is accomplished using a new algorithm [19] that
sequentially estimates the relative orbits of each target while
simultaneously refining the estimate of the semimajor axis of
the observer’s orbit. The analytic dynamics models from Sec-
tion 2 are employed to minimize computation cost. Note that
the perturbations which must be included in the model depend
on the planetary environment. For example, in LEO, the J2
oblateness perturbation is generally dominant. However, in
low Mars orbit, the J3 perturbation has comparatively more
influence [36] and must also be included.

For each target, BOD state estimation is a four-step procedure
as inspired by [14]. First, a 1-D family of state estimates is
computed for specified samples of δλ, using iterative batch
least squares refinement until either 1) a specified iteration
limit is reached, or 2) the step size is smaller than a specified
convergence threshold. Second, the final state estimate is
selected as the one which produced the least measurement
residuals. A typical choice of δλ is to sample the expected
state space in 1km intervals. A conceptual illustration of
BOD state selection for a single target is shown in Figure 7.

Figure 7. Conceptual illustration of converged
measurement residuals for rejected (gray) and selected
(black) state estimates for specified δλ values in BOD.

Third, the measurement noise matrix for each measurement
(denoted Rvbs) is estimated using the measurement residuals
corresponding to the final state estimate. Fourth, the covari-
ance for estimated state components Pest is computed, via

Pest = Y ∗est(NRvbs + YpriorPpriorY
T

prior)Y
∗T

est (16)

where Y ∗est is the pseudoinverse of the measurement sensi-
tivity matrix for estimated state components, Yprior is the
measurement sensitivity matrix for a-priori information (e.g.
orbit elements other than the semimajor axis), Pprior is the
uncertainty of a-priori information, and N is the number of
bearing angle measurements. This formulation allows BOD
to seamlessly transition between domains where uncertainty
is driven by sensor performance or by errors in the a-priori
information. Finally, the ROE estimates for each target are
appended to the refined estimate of the observer’s absolute
orbit, forming a complete local swarm state estimate.

It was demonstrated in [19] that this approach can provide
relative orbit estimates with target range errors of less than
20% (3-σ) in the presence of absolute orbit errors of up to
2 km using only two orbits of bearing angle measurements
across a wide range of Earth orbit regimes. Additionally,
the computation time required to estimate the state of each

7



target with two orbits of measurements is approximately five
seconds on a desktop PC with a 3.5GHz processor. Com-
putation cost increases linearly with the number of targets in
the local swarm, allowing the algorithm to efficiently scale to
large swarms.

Sequential Orbit Determination

The SOD module continually refines orbit estimates of the
observer and its targets − and auxiliary parameter estimates
such as sensor biases, ballistic coefficients, and differential
clock offsets − by seamlessly fusing measurements from all
observers transmitted over the ISL. SOD applies the bearing
angle measurement model and numerical GVE dynamics
model from Section 2 within a UKF framework, which
preserves higher order moments in the probability distribu-
tion to enable maneuver-free convergence using angles-only
measurements from a single observer [16]. Three additional
features are included in the SOD module to to maximize
performance. First, adaptive process noise estimation is used
to improve convergence speed and robustness to errors in
the dynamics model [37]. Second, the state definition is
organized in a way that exploits the structure of the Cholesky
factorization to reduce the number of calls to the orbit prop-
agator by almost a factor of two [38]. Third, measurements
from remote observers are assigned to locally-tracked targets
using selection criteria based on the Mahalanobis distances
between the estimated bearing angles to each target and each
candidate measurement.

To enable remote observer measurement assignment, it is first
necessary to know whether any locally-tracked targets are
remote observers. Let σmn denote the Mahalanobis distance
between the broadcast orbit estimate of remote observer m
and the orbit estimate of local target n. Remote observer m
is identified as target n if four conditions are fulfilled:

1. m has not yet been identified
2. σmn ≤ εid: remote observer m’s orbit is similar to the
estimate of the target n’s orbit.
3. σpn ≥ εsafe ∀ p 6= m: there is no other remote observer
that fits target n’s orbit.
4. σmq ≥ εsafe ∀ q 6= n: there is no other target that fits
remote observer m’s orbit.

Identifications are kept until σmn ≥ εremove. Parameters
are user-specified with εremove > εsafe > εid > 0. Formal
target identification ensures that measurements by observer
m can never be considered as measurements of observer
m − preventing this contradiction improves robustness and
reduces the search space when assigning measurements.

Next, measurements from remote observer must be assigned
to targets of the local observer. Let σij denote the Maha-
lanobis distance between measurement i from the remote
observer and the estimated measurement of local target j.
Measurement i from the remote observer is assigned to local
target j if three conditions are satisfied:

1. σij ≤ εassign: remote measurement i is close to the
modeled measurement of local target j.
2. σkj ≥ εambig ∀k 6= i: no other candidate measurement fits
the estimated state of target j.
3. σil ≥ εambig ∀l 6= j: no other local target fits remote
measurement i.

The ε parameters are user-specified with with εambig >
εassign > 0. Figure 8 illustrates four possible cases of modeled
and observed measurements from a remote observer which

(from left to right) show all conditions satisfied and violations
of Condition 1, Condition 2, and Condition 3, respectively.
Together, these conditions ensure that measurements are
only assigned when the observed and modeled measurements
uniquely agree with a statistical certainty determined by the
values of εassign and εambig . The values of these parameters
should be selected based on the expected number of targets,
relative motion geometry, sensor noise, and available orbit
knowledge for general swarming missions. However, for the
scenarios in this paper, the authors have found that setting
εid = 3, εsafe = 6, εremove = 10, εassign = 3 and εambig = 6
provide robust multi-observer identification.

Figure 8. Illustration of conditions in which all
measurement criteria are satisfied (left) and conditions that
violate each of the measurement assignment criteria (right).

State Parametrization

The choice of ARTMS state parametrization, as defined in
Section 2, also provides crucial advantages. Firstly, use
of ROE to represent target states means that the weakly
observable range to each target is primarily captured by
the δλ term in most relative motion geometries, with other
ROE being strongly observable [39]. This allows ARTMS
to maximize accuracy by applying separate state estimation
techniques to different components, as is done for BOD.
Second, the UKF in SOD is able to incorporate nonlinearities
in the dynamics and measurement models in an efficient and
accurate manner, which is leveraged to completely estimate
observer and target states without maneuvers. Third, OE and
ROE states vary slowly with time, which enables accurate nu-
merical integration using Gauss’s variational equations with
large timesteps [40] for efficient onboard orbit propagation.
Similarly, several accurate analytical dynamics models for
ROE have been developed for Earth orbit [23] [27] that can
be adapted to other planetary regimes.

Inclusion of the differential clock offsets and clock drift
rates between swarm observers in the estimated state further
aids robustness and minimizes necessary ground contact. If
clock offsets are not updated regularly, there will be mea-
surement errors due to mismatches between the epochs of
ISL measurements and the local ARTMS instance. This
most prominently manifests as steady-state bias in δλ: a
remote measurement being late or early is similar to the inter-
satellite range appearing smaller or larger. Divergence in the
absolute orbit estimate is also displayed as observer clocks
drift. During target identification, measurement assignment,
and UKF measurement updates, clock offsets are accounted
for by propagating the local state estimate to the estimated
epoch of the relevant measurement. For local measurements,
this is determined by the observer’s onboard clock. For
remote measurements, this is the received time-tag plus the
estimated differential clock offset for that observer.

8



5. OBSERVABILITY ANALYSIS
The problem of simultaneously estimating the absolute orbit
of an observer and relative orbit of a target with angles-only
measurements has been recently examined in [19], demon-
strating that the complete swarm state is not observable for
a single observer and target. Additionally, [15] suggests that
under some conditions, three-spacecraft swarms are weakly
observable with bearing angles. However, both studies only
apply single observer/target pairs − to investigate the general
feasibility of ARTMS, it is useful to extend these analyses to
multiple swarm observers in Mars orbit for a quantitative in-
dication of which state components can be estimated to useful
accuracy. To enable comparison with prior work, this paper
applies a similar methodology to [19]. A state covariance
matrix is computed from a measurement sensitivity matrix
and measurement noise matrix, which is used to determine
the precision to which state components can be estimated.

Numerical Observability Model

Consider a model providing inertial bearing angle measure-
ments z as a function of swarm state x, local observer o,
estimation epoch test, and measurement epoch t, of the form

z(t) = h(x, o, test, t) (17)

Let bearing angles be provided atN epochs t1, ..., tN , collec-
tively referred to as tm. Additionally, let there be M swarm
observers o1, ..., oM , collectively referred to as os. Define
the clock error cerr(o, t) of observer o at epoch t. Then, the
batch of measurements received by a single observer from all
swarm observers at specific epoch t is

yo(t) =

 h(x, o1, test, t+ cerr(o1, t))
...

h(x, oM , test, t+ cerr(oM , t))

 (18)

and across all epochs, the batch of measurements received by
a single observer from all swarm observers is

y = g(x,os, test, tm) =

yo(t1)
...

yo(tN )

 (19)

Here, measurements are obtained by numerical integration of
the GVE for for all swarm members, as per Section 2, from
test to each measurement epoch. Measurements are computed
from the propagated orbits.

It is then necessary to evaluate the partial derivatives of
measurements with respect to each component of x, for

Yest(x) =
∂g(x,os, test, tm)

∂xest

∣∣∣
x

(20)

where xest are the estimated components of x. The partial
derivatives for each specific measurement are computed nu-
merically via central difference, using

∂h

∂x

∣∣∣
x

=
h(x+ ∆x, o, test, t)− h(x−∆x, o, test, t)

2||∆x||
(21)

where ∆x is a vector that is zero except for the specific state
component where sensitivity is being evaluated. Sizes used
for the central difference are 10m for the semimajor axis,
10m/ao for the other OE, 1m/ao for all ROE, 0.1s for clock
offset, and 10−5 for clock drift rate.

The observability analysis is based on the following model
[19] for the relationship between the covariance matrixR for
the complete measurement batch, and the covariance matrix
Pest for the estimated state, given by

R = Yest(x)PestY
T

est(x) (22)

WhenYest is full column rank− as is the case for all scenarios
here − Pest can be computed as

Pest =
(
Y T

est(x)Yest(x)
)−1(

Y T
est(x)RYest(x)

)
×(

Y T
est(x)Yest(x)

)−1
(23)

An advantage of computing Pest, compared to evaluating the
Lie derivatives or observability Gramian, is that accuracy
requirements can be related to specific terms of Pest. The
matrix R follows the formulation in [19], which assumes
independent measurements with identical noise distributions,
no uncertainty in a-priori state information, and perfect
knowledge of dynamics. Pest thus provides an indication of a
lower bound for achievable estimation accuracy. If R1 is the
measurement noise matrix for a single measurement,R is

R =


R1 0 . . . 0
0 R1 . . . 0
...

...
. . .

...
0 0 . . . R1

 (24)

Below, observability of the complete swarm state is evaluated
for six configurations:

1. Two swarm members, with one observer
2. Two swarm members, all observers
3. Three swarm members, with two observers
4. Three swarm members, all observers
5. Four swarm members, with two observers
6. Four swarm members, all observers

Each observer takes measurements of all other swarm space-
craft. Additionally, two different absolute orbits are explored:
a near-circular low Mars orbit reminiscent of Mars Odyssey
[41], and an eccentric Mars orbit reminiscent of MAVEN
[42]. Two different relative orbit geometries are tested: one
that provides long-term passive safety via relative eccentric-
ity/inclination (E/I) vector separation [22], as well as an in-
train (IT) formation that provides near-constant along-track
separation (a common but less observable scenario). Tables 1
and 2 present the relevant OE and ROE. In these tables, the
first and second swarm configurations consist of Spacecraft
1 and 2; the third and fourth configurations consist of Space-
craft 1 to 3; and the fifth and sixth consist of Spacecraft 1 to 4.
In the third configuration, Spacecraft 1 and 3 are observers.
In the fifth configuration, Spacecraft 1 and 4 are observers.
Table 3 presents the clock errors used.

Bearing angles are assumed to be subject to 20 arcsec of 1-σ
noise, withR1 = 9.4e-9I2x2. This is representative of errors
from modern nanosatellite star tracker cameras [43]. Two
orbits of measurements are provided, with 50 measurements
per orbit at evenly-spaced intervals. Perturbations included
in the system dynamics for this analysis are a 4x4 Mars
GMM-3 gravity model [36], a cannonball drag model with an
exponential approximation of Mars atmospheric density [44],
a cannonball solar radiation pressure model with cylindrical
Mars shadow, and third-body Sun gravity. The dynamics
numerical integration timestep is 30s. Each spacecraft is
modelled as a 12U CubeSat.
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Table 1. Swarm OE and ROE for the near-circular absolute
orbit and E/I-vector separated relative orbit.

OE S/C 1 ROE S/C 2 S/C 3 S/C 4
a (km) 3789 δa (m) 0 0 0
e 0.001 δλ (km) 40 80 120

i (◦) 93 δex (m) 0 1000 0
Ω (◦) 0 δey (m) 2000 2000 -3000
ω (◦) 0 δix (m) 0 1000 0
M0 (◦) 0 δiy (m) 2000 2000 -3000

Table 2. Swarm OE and ROE for the eccentric absolute
orbit and in-train relative orbit.

OE S/C 1 ROE S/C 2 S/C 3 S/C 4
a (km) 5720 δa (m) 0 0 0
e 0.38 δλ (km) 40 80 120

i (◦) 75 δex (m) 0 0 0
Ω (◦) 0 δey (m) 0 0 0
ω (◦) 0 δix (m) 0 0 0
M0 (◦) 0 δiy (m) 0 0 0

Table 3. Swarm observer clock errors.

Clock Error S/C 1 S/C 2 S/C 3 S/C 4
δcerr (s) -0.5 -1.0 -1.5 -2.0

δderr (µs/s) -0.5 -1.0 -1.5 -2.0

Numerical Results

First, it is useful to investigate how the estimation of differ-
ent state subsets affects overall observability and estimation
performance. The second multi-observer configuration (three
spacecraft, two observers) is used, in a near-circular orbit and
E/I-vector separated formation. Four sets of state components
are evaluated: 1) target ROE, 2) target ROE and differential
clock offsets, 3) observer OE and target ROE, and 4) observer
OE, target ROE and target differential clock offsets. The 1-σ
uncertainty for each subset is provided in Table 4, computed
via the square root of the corresponding element on the main
diagonal ofPest. If a state component is not part of the subset,
it is denoted by ‘-’ in the corresponding column. When
appropriate, uncertainties are scaled by the semimajor axis
to provide a geometric interpretation of accuracy. Quantities
denoted by a bar indicate a mean uncertainty averaged across
all swarm observers and their tracked targets.

Several conclusions can be drawn. First, estimating differ-
ential clock offsets and drift rates has little effect on the
accuracy of absolute and relative state estimates. This is
evidenced by the very minor differences in accuracy between
Columns 1 and 2, or Columns 3 and 4. Second, the addition
of absolute state estimation does diminish the accuracy of
relative state estimation. For example, uncertainty in δλ
is three times larger in Column 4 compared to Column 2.
However, in contrast to prior work that investigated single
observers only [19], it is apparent that the complete swarm
state can be reasonably estimated using multiple observers.

Table 5 explores observability for different swarm config-
urations. The complete swarm state is estimated for the

Table 4. Uncertainties for subsets of estimated states: three
spacecraft, two observers, in a near-circular Mars orbit and

an E/I-vector separated formation.

Subset δα δα, δcerr α, δα α, δα, δcerr

σa (m) - - 4.3 5.6
aσex (km) - - 0.23 0.23
aσey (km) - - 0.26 0.26
aσi (km) - - 0.54 0.54
aσΩ (km) - - 0.66 0.66
aσu (km) - - 0.32 0.33
aσδa (m) 1.3 1.3 2.2 2.2
aσδλ (km) 0.15 0.16 0.44 0.45
aσδex (m) 2.0 2.1 6.9 7.0
aσδey (m) 4.1 4.3 11.9 12.1
aσδix (m) 2.0 1.2 11.6 11.6
aσδiy (m) 4.1 4.3 14.3 14.4
σδcerr (ms) - 11 - 13
σδderr (µs/s) - 1.0 - 1.3

near-circular orbit and E/I-vector separated formation. In
Columns 1 and 2, there exists very large uncertainties in
σu, σδλ, σδey and σδiy , i.e. Swarms 1 and 2 are unable to
estimate the complete state. Although Swarm 2 contains
two observers, they both measure equivalent but ‘mirrored’
bearing angles, which does not provide additional geometric
information that could improve observability or distinguish
unobservable modes. However, in Columns 3 and 4, the max-
imum uncertainties are less than 1 km and the complete state
becomes observable once a third spacecraft is added. This
introduces an additional reference point that makes changes
in the absolute and relative orbits geometrically unique, with
respect to changes in bearing angles. Observability further
improves in Columns 5 and 6 when adding more spacecraft
and more observers to the swarm. However, the accuracy of
clock estimation does slightly worsen with more observers
because more clock errors must be taken into account.

Table 6 presents observability results for different absolute
and relative orbits. The complete state is estimated using
the four-spacecraft swarm with two observers. In Column
2, the in-train formation sees noticeably diminished observ-
ability, partly due to the difficulty of distinguishing δa and
δλ from bearing angles. Nevertheless, reasonable accuracy
remains achievable because multiple observers provide stereo
measurements with which to determine target range. The
eccentric orbit in Columns 3 and 4 improves observability
for both formation types, and in particular benefits the in-
train formation compared to Column 2. Orbit eccentricity
introduces nonlinearities in the bearing angle measurements
which improve overall observability.

The above analysis suggests that complete swarm states are
observable using angles-only measurements, provided that
multiple observers and at least three spacecraft are present.
This provides useful guidelines as to when angles-only nav-
igation is feasible and what level of accuracy can be poten-
tially achieved. In ideal cases, using a four-spacecraft swarm,
it may be possible to determine the absolute orbit to within
500m and relative orbits to within 0.2% of target range, after
two orbits. In general, the least observable state components
are δλ,Ω and u, while conversely, a and the other ROE can
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Table 5. Uncertainties for different swarm configurations:
estimating the complete swarm state in a near-circular Mars

orbit and an E/I-vector separated formation.

# Members 2 2 3 3 4 4
# Observers 1 2 2 3 2 4
σa (m) 318 220 5.6 5.2 4.2 4.1

aσex (km) 4.7 3.3 0.23 0.18 0.10 0.07
aσey (km) 375 265 0.26 0.20 0.13 0.08
aσi (km) 5.0 3.5 0.54 0.41 0.22 0.16
aσΩ (km) 376 265 0.66 0.50 0.46 0.29
aσu (km) 7530 5300 0.33 0.20 0.14 0.09
aσδa (m) 1.6 1.1 2.2 1.6 1.4 0.9
aσδλ (km) 1.5e4 1.1e4 0.45 0.29 0.15 0.08
aσδex (m) 5.0 3.6 7.0 4.7 3.1 1.9
aσδey (m) 7.5e5 5.3e5 12.1 8.0 7.0 4.1
aσδix (m) 16.7 11.8 11.6 7.9 9.7 5.1
aσδiy (m) 7.5e5 5.3e5 14.4 9.7 8.3 4.9
σδcerr (ms) - 31 12 23 7.3 19
σδderr (µs/s) - 3.7 1.4 2.7 0.8 2.2

Table 6. Uncertainties for different swarm orbits, when
estimating the complete swarm state with four swarm

members and two observers.

Orbit and Circ. Circ. Eccen. Eccen.
Formation E/I IT E/I IT
σa (m) 4.2 17 5.5 6.6

aσex (km) 0.10 3.0 0.05 0.05
aσey (km) 0.13 2.9 0.05 0.34
aσi (km) 0.22 2.5 0.06 0.07
aσΩ (km) 0.46 2.5 0.16 0.18
aσu (km) 0.14 1.7 0.14 0.65
aσδa (m) 1.4 16 0.8 7.6
aσδλ (km) 0.15 2.1 0.16 0.28
aσδex (m) 3.1 63 1.5 4.8
aσδey (m) 7.0 62 6.7 0.8
aσδix (m) 9.7 52 2.6 2.5
aσδiy (m) 8.3 52 6.7 0.6
σδcerr (ms) 7.3 9.4 12 14
σδderr (µs/s) 0.8 1.1 0.7 0.8

be estimated with high precision. This matches the expected
behavior of inter-satellite bearing angle measurements: range
δλ is weakly observable and is dependent on u and Ω, while
the other ROE and resulting out-of-plane motion have much
stronger effects on bearing angles.

6. MISSION SIMULATION
Proposed Mission

To validate the observability analysis and demonstrate the
overall feasibility of autonomous angles-only swarm navi-
gation, a simulation scenario is developed for a proposed
Mars science mission. It presents an example of a fu-

ture swarm mission enabled by angles-only navigation tech-
niques. The swarm consists of four 12U CubeSats which
take distributed measurements of the Martian atmosphere,
thermosphere, ionospheric plasmas, and transient magnetic
fields. By doing so, better understanding of Martian weather,
atmospheric structure and ionospheric interactions can be
achieved. These objectives are partly inspired by past mis-
sions such as NASA’s MAVEN spacecraft, which studies the
atmosphere and ionosphere of Mars to provide insight into
how the planet’s climate has changed over time [42]. Another
inspiration is the upcoming SWARM-EX mission, which will
use multiple cooperative CubeSats to measure ionized and
neutral gases in Earth’s upper atmosphere [7]. It applies a
distributed measurement framework to observe atmospheric
structure with varying temporal and spatial resolutions, other-
wise impossible with a single spacecraft. However, SWARM-
EX is Earth-orbiting and will navigate with GNSS. In con-
trast, the proposed Mars swarm must navigate using bearing
angles exclusively. Crucially, the objective of distributed at-
mospheric measurements does not require extremely precise
swarm positioning knowledge. The mission can therefore be
carried out using angles-only as the sole navigation method.

It is proposed that the swarm is carried to Mars aboard a
larger, primary spacecraft, and is deployed upon insertion into
Mars orbit. The swarm initially deploys into a simple in-train
formation, whereupon it commences angles-only navigation.
The swarm then reconfigures into a nominal science forma-
tion with E/I-vector separation between members. Over the
course of the mission, the swarm executes regular planned
reconfigurations (e.g. monthly) to achieve varying measure-
ment baselines. Measurement data is broadcast to the primary
spacecraft when in suitable proximity, which the primary
spacecraft then relays to Earth. This is considered feasible
as the science objective does not require particularly high
data volumes. The only necessary ground contacts from a
navigation perspective are telecommands to provide required
ARTMS inputs, such as the single DSN absolute orbit and
clock initialization for each swarm observer, planned maneu-
vers, and specific algorithm parameters.

For simulation, the absolute orbit of the swarm is based on
the 2020 orbit of MAVEN [42]. The orbit is eccentric with
a period of approximately 3.5 hours, perigee altitude of 150
km, and apogee altitude of 4500 km. OE and ROE for a repre-
sentative science formation are given in Table 7. OE and ROE
during deployment are given in Table 8. ROE are computed
relative to Spacecraft 1. Spacecraft 1 and 4 are designated
as observers, while other swarm members conduct science
activity but do not actively run ARTMS. To enable consistent
swarm observation, it is assumed Spacecraft 1 maintains its
attitude such that its camera boresight is consistently aligned
with its local ŷW direction (i.e. the instantaneous velocity
direction). Spacecraft 4 points its camera boresight in −ŷW .

Table 7. Swarm configuration for mission science
operations.

OE S/C 1 ROE S/C 2 S/C 3 S/C 4
a (km) 5720 δa (m) -2 2 3
e 0.38 δλ (km) 20 40 60

i (◦) 75 δex (m) 300 600 -800
Ω (◦) 0 δey (m) 300 600 -800
ω (◦) 0 δix (m) 200 -400 800
M0 (◦) 180 δiy (m) 200 -400 800
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Table 8. Swarm configuration for mission deployment
operations.

OE S/C 1 ROE S/C 2 S/C 3 S/C 4
a (km) 5720 δa (m) -2 2 3
e 0.38 δλ (km) 50 100 150

i (◦) 75 δex (m) 30 40 40
Ω (◦) 90 δey (m) 40 -40 40
ω (◦) 90 δix (m) 30 -30 -30
M0 (◦) 0 δiy (m) 30 -30 -30

Figure 9 visualizes the absolute orbit of Spacecraft 1 around
Mars for the science formation. In this configuration, signif-
icant eclipse periods (yellow) and sun-blinding periods (red)
are present for the onboard VBS. Approximately 50% of the
orbit cannot supply angles-only measurements, presenting
a challenging scenario for navigation. Figures 10 and 11
present target relative orbits, with respect to Spacecraft 1, for
the science and deployment formation respectively.

A reconfiguration scenario is also defined. For this, the
swarm begins in the deployment configuration but with mod-
ified OE of Ω = 22.5◦and ω = 45◦. Three maneuvers are
performed by Spacecraft 1. First is a cross-track maneuver
with magnitude 0.3 m/s at time t = 5 hours, to introduce out-
of-plane relative motion. Second is an along-track maneuver
with magnitude 0.2 m/s at time t = 10 hours, to introduce
a difference in semi-major axis such that separation from
targets increases over time. Third is an along-track maneuver
with magnitude -0.2 m/s at time t = 20 hours, to remove the
difference in semi-major axis and recover bounded relative
orbits. The combined effect of these maneuvers is to recon-
figure into a science formation with larger target ranges of
δλ = (100, 150, 200) km with respect to Spacecraft 1. Figure
12 presents the motion of Spacecraft 2, 3, and 4 relative to
local observer Spacecraft 1.

Data Generation

Generation of simulation data consists of four steps: 1) sim-
ulation of ground truth, 2) synthesis of noisy input measure-
ments, 3) collection of HIL measurements, and 4) collection
of ARTMS telemetry.

Ground truth positions and velocities of the four-spacecraft
swarm are numerically integrated using Stanford SLAB’s

Figure 9. Absolute orbit of Spacecraft 1 during science
operations. Eclipses are in yellow and sun-blinding periods

are in red. The purple vector indicates sun direction.

Figure 10. Science formation. Relative positions of S/C 2,
3, 4 with respect to S/C 1 in the RT plane (top) and RN plane

or image plane (bottom).
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Figure 11. Deployment formation. Relative positions of
S/C 2, 3, 4 with respect to S/C 1 in the RT plane (top) and

RN plane or image plane (bottom).

S3 software [45], with the addition of new models adapted
for the Mars dynamic environment. Included perturbations
are a 60x60 Mars GMM-3 gravity model [36], a cannonball
drag model with an exponential approximation of Mars at-
mospheric density [44], a cannonball solar radiation pressure
model with cylindrical Mars shadow, and third-body Sun
gravity. Each spacecraft is modelled as a 12U CubeSat that al-
ways has its VBS aligned in the local ±ŷW direction. Target
visibility and visual magnitudes are computed using a model
from Cognion [46] which takes into account the observer-
target-Sun phase angle, flux contributions from Mars albedo,
and variations in reflected flux from different satellite sur-
faces. The nominal satellite ballistic coefficient is 0.01 with
ground truth values of±0.002. Ground truth clocks and clock
noise are propagated using the Galleani model with includes
both frequency and phase noise [47]. Clock quality emulates
the Microsemi SA.45s chipscale atomic clock with an Allan
deviation of 10−10 for τ = 1 second [48]. Noise values of
q1 = (3 × 10−10)2 and q2 = (3 × 10−14)2 are applied
in the clock model. In simulations, the initial differential
clock offset between Spacecraft 1 and 4 is 1.5 s with an
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Figure 12. Swarm reconfiguration. Relative positions of
S/C 2, 3, 4 with respect to S/C 1 in the RT plane (top) and

RN plane or image plane (bottom).

initial differential drift rate of 1.5 µs/s. Observer maneuver
knowledge possesses a 1-σ error of 5% in magnitude.

Measurements are then synthesized from ground truth. The
DSN absolute orbit initalization uses a 1-σ error of 10m in
position and 10 mm/s in velocity [49]. Image measurements
for the local swarm observer are generated using 3D vector
graphics in OpenGL [50]. The visual magnitudes, angles, and
proper motions of stars are obtained from the Hipparcos star
catalog and any objects within the camera FOV are rendered
using Gaussian point spread functions. Noise is added to
the image attitude with 6” off-axis jitter and 30” boresight
jitter (1-σ). ISL measurements from remote observers are
computed using 1-σ bearing angle noise of (20”, 20”) and
attitude rotation angle noise of (6”, 6”, 30”). These values
are considered typical for modern CubeSat star trackers and
image centroiding algorithms [31] [43].

Simulations also include a CubeSat star tracker in the loop.
Input images for each observer are retrieved from a Blue
Canyon Technologies Nano Star Tracker as stimulated by
the Stanford SLAB Optical Stimulator (OS). The OS is a a
variable-magnification testbed consisting of two lenses and
a microdisplay. Synthetic space scenes are generated and
shown on the display. By moving the two lenses and display
relative to each other, the VBS under test is stimulated with
appropriate magnification. The OS is calibrated such that the
VBS image is similar in both radiosity and geometry to what
would be observed in orbit. Development, calibration and
usage of the OS is detailed in [50] with achievable errors
between desired and measured bearing angles of less than
20”. Figure 13 presents the OS hardware.

After generation, all input data is sent to ARTMS for pro-
cessing, which exists in a flight-code-like implementation in
C++ and MATLAB Simulink. Simulations were run on a
PC with an Intel i-7700HQ CPU and 16GB of RAM. The
only perturbations modeled within the SOD filter are 20x20
GMM-3 spherical harmonic gravity. The SOD dynamics
integration timestep is 30s. In these simulations, covariance
matching techniques and empirical acceleration estimation
are not applied. The initial absolute orbit estimate and
covariance are provided from DSN, and the initial clock offset
and drift rate estimates are zero with covariances of 1s and

Figure 13. The SLAB Optical Stimulator.

100 µs/s respectively. No a-priori relative orbit information is
provided. BOD state initialization occurs after 4 hours, upon
which SOD commences refinement of orbit estimates. Image
measurements are received every two minutes.

Simulation Results

Navigation results for the science formation are presented in
Figures 14 and 15. Plots display position and velocity errors
in the RTN frame. Time t = 0 in each plot corresponds to
the commencement of navigation by SOD. Despite significant
measurement gaps, ARTMS is able to perform both absolute
and relative orbit determination. Bearing angle measurements
are used to maintain the absolute orbit initialization provided
by the DSN and refine the relative orbit initialization com-
puted by BOD. The absolute orbit is estimated to 900m posi-
tion accuracy at steady state, and relative orbits are estimated
to 0.5% of target range. The majority of position error occurs
in the along-track direction, as it is analogous to the weakly
observable target range. Other components of target motion
are more observable and see correspondingly smaller error.
Differential clock offsets and drift rates are also effectively
estimated − despite large initial errors, offsets are estimated
to within 0.02s and drift rates to within 0.4 µs/s. Convergence
to steady state is achieved after approximately two orbits.

The state covariance observes periodic growth and shrinkage,
partly due to eclipse periods during which measurements
are unavailable and covariance increases. This behavior is
also influenced by orbit eccentricity. Near periapsis, swarm
velocities are faster and there is more change in swarm states
between measurements. Furthermore, swarm separations are
larger, meaning that filter dynamics modeling is somewhat
less accurate. This results in covariance growth near periapsis
and shrinkage near apoapsis. Regular spikes of relative orbit
error are also observed near periapsis due to the impact
of drag on swarm dynamics (which is unmodeled in the
filter). It is suggested that covariance matching [21] or
adaptive process noise estimation [38] could be applied to
effectively treat this discrepancy without requiring additional
dynamics models onboard. Error spikes are also observed
in the absolute orbit estimate when exiting eclipse periods −
the relatively simple onboard dynamics model leads to state
propagation errors. However, these are quickly recovered,
indicating good robustness. In a similar vein, the initial
absolute orbit error when SOD initializes is much larger
than what is supplied by the DSN, because four hours of
propagation are required to collect measurements for BOD
(during which SOD is not receiving measurements).

Longer trials across a 200-hour time period, but without HIL
measurements, display similar performance, indicating that
state estimate convergence can be maintained indefinitely
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Figure 14. Absolute orbit estimation errors for Spacecraft 1 in the science formation.

Figure 15. Relative orbit and clock offset estimation errors for Spacecraft 1 in the science formation.

with angles-only measurements. Clock error estimation is
necessary to achieve this: steady-state biases of approxi-
mately 2-3% in target δλ values are observed per 0.1s of
differential clock offset. Divergence of the absolute orbit
estimate is also observed as offsets increase, due to increas-
ing measurement errors. At periapsis, where velocities are
3.5km/s, 0.1s of clock offset introduces roughly 350m of
position error. Given that clock offset estimation is not
detrimental to observability, it is strongly recommended.

Results for the deployment formation are presented in Fig-
ures 16 and 17. Despite 100% measurement availability,
performance is visibly degraded compared to the previous
simulation. The absolute orbit is estimated to 1200m position
accuracy at steady state, and relative orbits are estimated to
0.5% of target range. Clock offsets are estimated to within
0.08s and convergence times for the relative state estimate
are significantly longer. Larger error spikes are also observed
in the relative state estimate near periapsis. As has been
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Figure 16. Absolute orbit estimation errors for Spacecraft 1 in the deployment formation.

Figure 17. Relative orbit and clock offset estimation errors for Spacecraft 1 in the deployment formation.

discussed previously, in-train formations are comparatively
more challenging to track, because relative motion is small
and δλ is only weakly observable. Nevertheless, it is still
possible to achieve absolute and relative orbit determination
using angles-only measurements. Two aspects act to improve
observability and make this possible: first, the eccentricity
of the orbit introduces additional relative motion between
targets, and second, the multiple swarm observers provide
improved performance via stereo measurements.

Results for the reconfiguration are presented in Figures 18
and 19. Maneuvers are provided to ARTMS via telecom-
mands but do possess ∼5% magnitude errors, which leads
to complications when estimating clock errors. Immediately
after a maneuver, the filter is unable to distinguish whether
resultant error in target positions is due to an imprecise
maneuver or a change in clock offset. Sudden increases
in clock estimation error are thus observed. However, the
filter is able to recover clock estimates within two orbits and
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Figure 18. Absolute orbit estimation errors for Spacecraft 1 during reconfiguration.

Figure 19. Relative orbit and clock offset estimation errors for Spacecraft 1 during reconfiguration.

ARTMS successfully continues orbit determination.

It is also valuable to discuss the accuracy of the ARTMS
autonomous initialization. In the above trials, during initial-
ization, IMP achieves 100% measurement assignment preci-
sion and 85% measurement assignment recall for the science
formation, and 98% precision and 64% recall for deployment.
During deployment, targets are in close proximity in images,
and IMP elects to make no assignment if the choice is

considered ambiguous. This is to ensure high precision and
avoid incorrect assignments since angles-only navigation is
particularly sensitive to measurement errors. Using these
measurements, BOD achieves initial position errors of (1.8,
4.3, 3.8, 3.8) km for Spacecraft 1 to 4 in the deployment
formation, and (1.8, 3.6, 3.5, 3) km for the science formation.
As expected, these results are somewhat worse than those
in the observability analysis (which applied two orbits of
measurements instead of one, and assumed perfect dynamics
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knowledge and better noise conditions). With the aid of
subsequent measurements and the UKF, the system is able
to move towards the accuracy lower bound suggested by the
observability analysis.

7. CONCLUSION
This research has presented an architecture to enable au-
tonomous navigation of spacecraft swarms in general plan-
etary orbit regimes, by using angles-only measurements ob-
tained by onboard cameras. Key focuses of the architecture
are distribution, and treatment of arbitrary swarm configura-
tions consisting of multiple observers and multiple targets;
autonomy, via self-contained navigation in deep space with
minimal ground contact; and robustness, with long-term
maneuver-free convergence and sufficient accuracy to enable
proposed swarm missions under realistic conditions. These
goals are achieved through a novel multi-observer frame-
work and three core algorithms. First, an image processing
algorithm applies multi-hypothesis tracking and parametric
models of target kinematics to produce batches of bearing
angles corresponding to targets in the field of view, with-
out a-priori target state information. Second, a batch orbit
determination algorithm computes initial orbit estimates for
the observer and its targets from bearing angle batches. The
weakly-observable target range is estimated via sampling,
and strongly-observable components are estimated using it-
erative batch least squares. Third, a sequential orbit de-
termination algorithm continually refines the orbit estimates
of the observer and its targets. A UKF is employed with
a nonlinear dynamics model and an ROE state to resolve
the weakly-observable range without requiring maneuvers.
Multi-observer measurement assignment methods allow the
filter to leverage measurements from both local and re-
mote observers for greatly improved navigation performance.
Clock offsets between swarm observers are also estimated
on board. Together, these algorithms enable angles-only
estimation of both absolute and relative swarm orbits with
minimal hardware, provided that each observer receives a
coarse estimate of its absolute orbit at a single epoch.

The theoretical performance of multi-observer angles-only
navigation was investigated through a numerical observabil-
ity analysis and computation of the estimated state covari-
ance. Results suggest that at least three spacecraft and
two observers are needed for complete swarm observability.
Observability is maintained for both in-train and E/I-vector
separated formations in near-circular and eccentric orbits,
though in-train formations are somewhat less observable.
Given two orbits of measurements and representative sensor
uncertainties, the following lower bounds are computed for
estimation accuracy: 500m (absolute orbit), 0.2% of target
range (relative orbits) and 20 ms (differential clock offsets).
This analysis is validated by camera-in-the-loop simulations
of a proposed swarm science mission, consisting of four
CubeSats in Mars orbit. Simulation results across different
formation types demonstrate steady-state accuracies of <1
km in absolute position, <0.5% of target range in relative
position, and <0.1 s for clock offsets. Convergence of the
state estimate is maintained during long-term testing, even
in the presence of significant measurement gaps and orbit
perturbations. However, periodic covariance growth and
estimation errors were encountered due to higher velocities
and larger swarm separations near periapsis, and the effects
of unmodeled dynamics in the filter. It is suggested to treat
this by adding adaptive process noise estimation. Clock offset
estimation is also strongly recommended to prevent large

multi-observer measurement errors and state errors. Overall,
simulations display promising navigation performance for
a variety of swarm geometries, with sufficient accuracy to
enable the proposed objective.

A key question to be addressed in future work is quantifica-
tion of algorithmic complexity. Development of a flight code
implementation of ARTMS is continuing, which will involve
detailing of performance costs when running on CubeSat
flight processors. Related aspects to be investigated are
the computational scalability of ARTMS to larger swarms
and choice of algorithm update timescales for improved
efficiency. Flight testing of ARTMS in LEO is expected to
occur in 2022 aboard the Starling technology demonstration
mission under development at NASA Ames.

Further research avenues include formal definitions of swarm
communication/measurement topologies and the impact of
these elements on observability. Formalizing the links be-
tween swarm design and achievable navigation performance
may offer insights into mission development. There is also a
need to implement optimization of swarm observer attitudes,
to ensure that targets remain in view for consistent obser-
vation − this may prove particularly challenging for certain
swarm geometries, or if sensing is limited. Application of
ARTMS to moon- or asteroid-orbiting missions characterized
by weak or poorly-known gravity will also be explored.
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