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ABSTRACT

This paper demonstrates an algorithmic framework for autonomous, distributed navigation and timekeeping for spacecraft
swarms and constellations using angles-only measurements from onboard cameras. Angles-only methods are compelling as
they reduce reliance on external measurement sources. However, prior flight demonstrations have faced limitations, including 1)
inability to treat multi-agent space systems including multiple observers and targets in an accurate and timely manner, 2) lack of
autonomy and reliance on external state information, and 3) treatment of primarily Earth-orbiting scenarios. The Absolute and
Relative Trajectory Measurement System (ARTMS) discussed in this paper overcomes these challenges to enable future lunar
missions. It consists of three novel algorithms: 1) Image Processing, which tracks and identifies targets in images and computes
their bearing angles; 2) Batch Orbit Determination, which computes a swarm state initialization from angles-only measurements;
and 3) Sequential Orbit Determination, which uses an unscented Kalman filter to refine the swarm state, seamlessly fusing
measurements from multiple observers to achieve the necessary robustness and autonomy. This paper augments ARTMS for
lunar navigation and its theoretical performance is investigated through a quantitative observability analysis. High-fidelity
simulations with a star tracker in the loop demonstrate successful navigation of swarms and constellations in low lunar orbits,
near-rectilinear halo orbits, and elliptic frozen orbits. ARTMS achieves absolute orbit estimation for all swarm members using
only inter-satellite angles with simultaneous estimation of differential clock offsets and ballistic coefficients. It therefore presents
an important capability for the support of future lunar and planetary exploration.

I. INTRODUCTION

There is growing interest in establishing a sustainable human presence on the Moon via future manned and robotic missions
[L]. Critical to the success of these efforts is the deployment of multiple spacecraft, including swarms and constellations, in
cislunar and lunar space. For example, the NASA Goddard Space Flight Center has proposed the LunaNet concept, an extensible
networked architecture for lunar communication and navigation [2]. Similarly, the ESA Moonlight concept proposes a dedicated
lunar telecommunications and navigation constellation [3]. Additionally, the NASA Starling program has suggested applying
swarms of autonomous satellites for lunar remote sensing and monitoring of Deep Space Gateway operations [4].

Currently, navigation in deep space and in lunar environments relies on regular radio contact with ground stations such as
NASA’s Deep Space Network (DSN). This is neither optimal nor practical in the long term because dedicated ground stations
are limited in number and will soon be oversubscribed, preventing scalability to larger numbers of lunar spacecraft [S]. In
addition, navigation delays are introduced by ground-in-the-loop elements, limiting the autonomy of space assets [6]. Radio
navigation is also impacted on the far side of the Moon where direct communication with Earth ground stations is unavailable.

In response to these limitations, recent research has explored the challenges of receiving Earth-orbit Global Navigation Satellite
System (GNSS) signals at lunar distances. Key technologies are high-gain GNSS receivers to track weak sidelobe signals
and efficient filtering algorithms to mitigate dilution of precision due to poor variation in line-of-sight (LOS) vectors to
GNSS satellites. Simulations have demonstrated the use of Global Positioning System (GPS) sidelobe signals for positioning,
navigation, and timing in various lunar orbits, including moon transfer orbits [7][8]], Elliptic Lunar Frozen Orbits (ELFOs) [9],
and Near-Rectilinear Halo Orbits (NRHOs) [[10]] [11]. Several flight missions are scheduled to test these capabilities including
NASA’s Lunar GNSS Receiver Experiment [[12] and ESA’s Lunar Pathfinder [13]].



An alternative approach for navigation of multi-agent space systems is optical angles-only navigation, whereby star trackers or
other vision-based sensors (VBS) aboard observer satellites in the swarm or constellation provide bearing angle measurements
to target resident space objects (RSO). This overcomes several drawbacks of GNSS-based navigation, in that 1) a dedicated
high-gain GNSS receiver is not required, 2) tracking can also be performed for unknown or uncooperative targets, and 3)
navigation is not affected by occultation on the far side of the Moon or other GNSS signal dropouts. Cameras are passive,
robust, low size-weight-power-cost sensors with high dynamic range that are already present on the majority of spacecraft. They
may obtain measurements of non-cooperative targets such as space debris or satellites without active sensors, and reliance on
external measurement sources is reduced or eliminated.

Two prior flight experiments have demonstrated angles-only navigation in orbit. In 2012, the Advanced Rendezvous using
GPS and Optical Navigation (ARGON) experiment enabled the rendezvous of two smallsats in Low Earth Orbit (LEO) from
inter-satellite separations of 30 km to 3km [[14]]. This was followed by the Autonomous Vision Approach Navigation and
Target Identification (AVANTI) experiment in 2016, which similarly conducted a rendezvous of two smallsats from separations
of 13km to 50 m [15]. Although these demonstrations were successful, they are characterized by four key deficiencies: 1)
inability to accommodate multiple observers and multiple targets 2) reliance on accurate a-priori relative orbit information for
initialization, 3) reliance on external knowledge of the observer’s absolute orbit to maintain state convergence, and 4) reliance
on frequent translational maneuvers to resolve the weakly observable target range.

To overcome these deficiencies and enable future distributed missions in deep space, Stanford’s Space Rendezvous Laboratory
(SLAB) has proposed the Absolute and Relative Trajectory Measurement System (ARTMS) [16]] [17]. ARTMS is an autonomous
Angles-only navigation architecture for multi-agent space systems divided into three modules and corresponding new algorithms:
IMage Processing (IMP) [[L8], Batch Orbit Determination (BOD) [19], and Sequential Orbit Determination (SOD) [16]. IMP
identifies multiple RSOs in 2D images from a single monocular camera without requiring a-priori relative orbit knowledge.
BOD generates an initial state estimate for all participating satellites by using batches of angles to targets and a single coarse
absolute orbit initialization for the observer. SOD continually refines the ARTMS state estimate using a newly designed
unscented Kalman filter (UKF), fusing measurements from multiple observers broadcast over an inter-satellite link (ISL) to
achieve complete state observability and time synchronization. In this fashion, ARTMS enables distributed, autonomous, and
scalable angles-only navigation with minimal reliance on external or a-priori information and no reliance on maneuvers.

ARTMS is due to be flight-tested in LEO during the upcoming the Starling Formation-flying Optical eXperiment (StarFOX)
[4]. StarFOX is one of the primary payloads of NASA Starling, a four-CubeSat technology demonstration mission scheduled
for launch in 2022. Its applicability to deep space has been studied as part of a collaboration between SLAB and the NASA Jet
Propulsion Laboratory, which successfully demonstrated robust navigation across a variety of formations in Mars orbit through
a quantitative observability analysis and camera-in-the-loop simulations [20].

This paper extends and examines the applicability of ARTMS for navigation and timekeeping in lunar space. New challenges
must be addressed because the lunar dynamic environment is substantially different from Earth or Mars due to a weaker central
gravitational potential, significant gravitational anomalies, and comparatively stronger third-body and solar radiation pressure
(SRP) perturbations. Many lunar orbits are therefore unstable, and choices for stable orbits such as NRHO are highly elliptical
with long orbit periods. This poses challenges on the weaker observability of angles-only navigation and ARTMS algorithms
must be augmented for navigation in slow-moving and highly-perturbed scenarios. Envisioned distributed space systems around
the Moon can also be characterized by large separations, i.e. constellations rather than swarms, which may impact target optical
visibility and the accuracy of linearizations within ARTMS. Third, the frequency of Earth ground contacts for spacecraft clock
resets/initialization will likely be low, requiring robust long-term timekeeping throughout the swarm or constellation.

In this work, ARTMS is extended with several algorithmic developments, including 1) on-board estimation of differential clock
offsets and ballistic coefficients for more autonomy and robustness, 2) revised internal dynamics models in both analytic and
numeric forms for accurate, efficient state propagation in lunar orbits, and 3) new VBS target tracking modes for enhanced
measurement availability in highly elliptical and constellation orbits. This is complemented by a quantitative observability
analysis which examines theoretical navigation performance for low- and high-altitude orbits, near-circular and eccentric orbits,
close-range in-train and passive safety ellipse formations, and a constellation. Analysis indicates that all proposed scenarios are
observable, though particular challenges are faced for the NRHO and constellation cases discussed in the paper.

To validate the analysis, high-fidelity simulations of ARTMS navigation in lunar orbit are also conducted using an optical
stimulator with star tracker hardware-in-the-loop (HIL). Despite challenging measurement conditions, suitable navigation
accuracy and robustness is achieved for varying orbit regimes. ARTMS therefore demonstrates the capability of autonomous
distributed angles-only navigation and timekeeping to enable and support future lunar exploration.

The paper is organized as follows. Section [lI] presents the mathematical background of the ARTMS measurement model,
dynamics model, and estimated state. Section [ITI] introduces the ARTMS architecture and the algorithms necessary to enable
angles-only navigation in lunar orbit. Section [[V] presents the observability analysis. Section |V|details the simulated lunar
missions and data generation pipeline, with the discussion of results. Section[VI|contains concluding remarks.



II. MODELING PRELIMINARIES
1. Measurement Model

The ARTMS payload produces angles-only measurements by computing the time-tagged bearing angles to objects detected in
VBS images. First, define the radial/along-track/cross-track (RTN) frame of the observer, denoted R. It is centered on and
rotates with the observer and consists of orthogonal basis vectors 2" (directed along the observer’s absolute position vector);
2R (directed along the observer’s orbital angular momentum vector); and g = 2% x &R [21]]. Similarly, define a frame
W using §"V (directed along the observer’s velocity vector); 2"V = 2%; and 2"V = ¢V x 2"V. W only differs from R by
a rotation of the observer flight path angle ¢, about 2™ with ¢4 ~ 0 in near-circular orbits [21]]. Bearing angles consist of
azimuth and elevation (cv, €) and subtend the LOS vector 67" = (67, 6r, 6r)) from the observer to the target. Superscript V

indicates description in the observer VBS coordinate frame, consisting of orthogonal basis vectors ¥, 9", 2V. The VBS may
be aligned as necessary to keep swarm targets in the field of view (FOV). Bearing angles are then computed via [16].
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Bearing angles can be related to the inertial frame by rotating 7" into the Moon-Centered Inertial (MCI) frame M, as per
srM = VRMspY ?)

where V?EM denotes a rotation from frame ) into frame M. This rotation matrix is computed by performing attitude

determination using stars identified by the VBS [I4]. Rotation matrices REM and WEM can be computed using the
observer’s absolute orbit estimate. Figure [I] depicts the relationship between coordinate frames and bearing angles.

2. State Parametrization

ARTMS represents the absolute state ¢ of the observer in terms of quasi-nonsingular orbit elements (OE), with
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Above, a,e,i,,w, and M are the canonical Keplerian OE of semi-major axis, eccentricity, inclination, right ascension of
the ascending node, argument of periapsis, and mean anomaly respectively, and u is the mean argument of latitude. All are
computed with respect to M. Fully nonsingular OE can be used for equatorial orbits [21].

The relative orbit dcx of a target spacecraft, as tracked by an observer, is described by the quasi-nonsingular relative orbit
elements (ROE) [22]. The ROE state parametrization is defined in terms of the absolute OE of the observer and target (denoted
by subscripts ‘0’ and ‘¢’ respectively) via
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Above, da is the relative semi-major axis, J\ is the relative mean longitude, de = (de,, (5ey) is the relative eccentricity vector
with magnitude de and phase ¢, and §i = (di,, di,) is the relative inclination vector with magnitude d¢ and phase 6. Fully
nonsingular ROE have also been defined for equatorial orbits [23]].

The ARTMS state also includes several optional components. First are absolute empirical accelerations for the observer and



differential empirical accelerations for targets, defined as
R R
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respectively in R. Empirical accelerations are used to approximately capture unmodeled dynamics, and are more computationally
efficient than numerically integrating the full differential equations of relative motion [24]. Additional state components are
the absolute clock errors and clock drift rates of the observer, and differential clock offsets and clock drift rates of targets with

respect to the observer, defined as
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Above, ce; is a clock offset and d,,, is a clock drift rate. The absolute ballistic coeflicient of the observer and differential ballistic
coefficients of targets with respect to the observer can also be estimated, denoted as
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For the lunar case, only the SRP coefficient is taken into account. Thus, for n detected targets, the complete ARTMS state is

R
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Reasoning behind this choice of state parametrization is discussed in Section [[II.

3. Dynamics Model

ARTMS propagates the absolute orbits of observer and target spacecraft using fourth-order Runge-Kutta integration of the Gauss
Variational Equations (GVE). For state ¢, the osculating OE of each spacecraft evolve according to

& = G(a)d® 9)

where G € R5%3 is the well-documented GVE state transition matrix [25] and d” is the perturbing acceleration expressed
in R. Depending on the orbit regime, common perturbations are spherical harmonic gravity, atmospheric drag, third-body
gravity and SRP. Analytic dynamics models for the mean OE which include the effects of .J5, J3 and third-body gravitational
perturbations are alternately used when computational efficiency is paramount. .J, causes secular drifts in M, w and €2 [26]; J3
causes long-periodic changes in ¢, i, w and 2 [27]); and third-body gravity causes double-averaged changes in e, 7, w and € [28].
Analytic linear models including Jo, differential drag and SRP are also available for ROE [23] [29].

A useful aspect of the ROE is that they provide geometric intuition regarding target relative motion. As shown in [22] for near-
circular orbits, there is a linear map between the ROE and the target’s curvilinear position vector §7 in the observer’s RTN frame.
The near-circular case was extended to eccentric orbits [24] by defining the eccentric ROE da* = (da, dA*, de?, dey, Oty Giy).
The eccentric ROE revert to traditional ROE for e, ~ 0. The resulting map is
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Figure [2| presents relative motion in RTN for small separations. Oscillatory motion produced by target relative orbits is shown
in black, possessing the same frequency as the orbit. Oscillatory motion produced by orbit eccentricity is shown in red, acting
at twice the frequency of the orbit. da and §A* capture mean offsets in the radial and along-track directions respectively;
magnitudes of de* and d7 correspond to magnitudes of oscillations in the RT and RN planes respectively; and phases of de*
and 07 dictate the orientation and aspect ratio of the tilted ellipse in the RN plane. The eccentricity of the observer’s orbit
superimposes additional offsets and higher-frequency oscillations in the RT and RN planes.



Clock offsets are propagated within ARTMS using a random-walk process defined as
e = {dgf] (an

where T is the propagation timestep. Spacecraft ballistic coefficients are modeled as constants within ARTMS.
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Figure 1: Definition of target bearing angles with respect to Figure 2: Target relative motion in the £™-¢™ (RT) and &"-
V, R and W, with the VBS pointing in the anti-velocity direc- 2™ (RN) planes. Motion that is first-order in spacecraft separa-
tion. tion is in black. Contributions proportional to e are in red [16].

III. ARTMS ARCHITECTURE

ARTMS is a self-contained software payload that provides autonomous, distributed angles-only navigation for spacecraft multi-
agent space systems in planetary orbit regimes [[16] [17] [20]. The following terminologies are adopted. “Observer” refers to
the spacecraft hosting the instance of ARTMS being discussed. A “remote observer” is another spacecraft hosting an ARTMS
payload that is providing measurements over the Inter-Satellite Link (ISL). The “swarm” consists of all observers and all other
relevant “targets”, which are space objects tracked by the observers. Observers might only track a subset of the swarm and
targets may themselves be remote observers. Figure 3] presents an example (not to scale).

Sensor fields of view \
/ Noncooperative

ISL
ISL messages
Remote
messages observer
Absolute ‘ _____ .
orbit path ‘\\\ """"""
Observer

Relative orbit paths w.r.t. observer

Figure 3: Illustration of ARTMS observers and targets. Not to scale.

A high-level overview of ARTMS is presented in Figure[d] It consists of three core software modules: IMage Processing (IMP),
Batch Orbit Determination (BOD) and Sequential Orbit Determination (SOD). Data sources are the VBS, which provides
time-tagged images to ARTMS; the ISL, which communicates orbit estimates and bearing angle measurements between swarm
observers; the spacecraft bus, which provides additional attitude estimates if available; and the ground segment, which provides
telecommands and receives telemetry. In this paper, it is assumed GNSS measurements are unavailable.

The operation of each module is briefly described as follows. First, the IMP module uses VBS images to produce batches of
bearing angle measurements with corresponding uncertainties for all detected targets in the field of view (FOV). The only prior
information needed by IMP is a coarse estimate of the observer’s absolute orbit at a single past epoch, provided by a source
such as the DSN. Sample times for IMP image measurements are chosen as 0.5-2% of the orbit period. The BOD module uses
IMP angle batches, as well as the aforementioned observer orbit estimate, to compute state estimates for the observer and its
targets. BOD is run once per orbit. The SOD module uses the BOD estimate to initialize a UKF, which fuses measurements
from IMP and remote observers to refine the state estimates of the observer and its targets. The resulting stereo bearing angle
measurements greatly improve state estimate robustness, convergence, and accuracy. Subsequent BOD estimates are used for
fault detection in SOD and re-initializations in contingency cases. SOD also provides updated state estimates to IMP to more
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Figure 4: General architecture of ARTMS including external systems/data sources (dark gray), software modules (green), and exchanged
data (blue). GNSS inputs (when available) and ground inputs are provided to all modules. Ground telemetry consists of all modules’ outputs.

efficiently assign new bearing angles to existing targets. The SOD orbit estimate and IMP bearing angles are sent to the ISL.
All modules may utilize ground information when appropriate such as knowledge of planned swarm maneuvers. In this fashion,
ARTMS is distributed across the swarm and is scalable to arbitrary swarm sizes. Furthermore, modules require almost no contact
with ground-based resources. Novel algorithms self-initialize navigation using a single external absolute orbit measurement per
observer and modules take advantage of additional information when available to enable near-total autonomy. The IMP [18§]],
BOD and SOD [[16]] algorithms are described in more detail in the following sections, along with extensions to ARTMS to
enable navigation for general multi-agent space systems in lunar orbit.

1. Image Processing

The objective of IMP is to produce batches of time-tagged bearing angle measurements to each target using a coarse estimate
of the observer’s orbit and images provided by the VBS.

First, a centroiding algorithm is used to simplify the image into a list of pixel cluster centroids [30]. Centroids are converted
to unit vectors in the VBS frame using a calibrated camera model. Next, the Pyramid star identification algorithm is
applied to remove stellar objects (SO) from the list of vectors. Uncatalogued SO are detected as objects with unchanging inertial
unit vectors between images and camera hotspots are detected as objects with unchanging pixel coordinates [13]. The VBS
attitude is computed from the pointing vectors to identified stars in the inertial and sensor frames using the g-method [32]. The
remaining minimal set of inertial unit vectors corresponds to potential targets and other unknown objects. If SOD is initialized,
IMP uses the SOD state estimate to compute predicted target bearing angles and associated covariance regions, and applies the
Mahalanobis distance between predictions and measurements to assign angles to existing targets. If no a-priori relative orbit
knowledge is available, IMP employs the novel Spacecraft Angles-only MUItitarget tracking System (SAMUS) algorithm to
detect target tracks in sets of unidentified measurements [18]].

SAMUS applies concepts of multi-hypothesis tracking (MHT) [33] in that as measurements arrive, several simultaneous
hypotheses are maintained for their association into target tracks. MHT robustly converges towards the correct hypothesis over
time as more information becomes available gating, scoring, and pruning its propagated hypotheses. SAMUS achieves improved
precision and efficiency compared to naive MHT by leveraging domain-specific knowledge to develop new kinematic scoring
and trimming criteria. These criteria are derived from Equation [I0] which maps OE and ROE to target relative position in R.
Note that true anomaly f, is the only quickly-varying term whereas other terms, defined by the OE and ROE, vary slowly in
the presence of perturbations such as third-body gravity and SRP [22]. These terms are effectively constant on the timescales
of image-to-image tracking and target motion is therefore periodic with known form. Even if specific ROE are unknown, this
kinematic model can be leveraged to assess target tracks formed by successive measured unit vectors in R.

The radial and cross-track components of Equation[I0]can be fitted to the track and used to score its quality and predict upcoming



measurements, as per
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where 1 ¢ are scaled ROE equivalents in bearing angle space. Terms r, a, f, e,w can be computed from the absolute orbit
estimate, and thus given at least three track measurements, ;... ¢ can be solved for via least squares. Kinematic rules are also
derived from Equation [T0] and Figure 2] to determine which hypotheses are physically reasonable. Briefly, 1) track velocities
must be below a set maximum, 2) track velocities must be consistent over time, 3) tracks should generally not feature acute
angles, 4) tracks should turn in a consistent direction, and 5) new data must be close to the predicted measurement.

Only tracks which pass all rules are propagated, and tracks are scored on how well they match expected kinematic behavior.
Expected swarm maneuvers can be assigned to tracks by matching qualitative similarities between changes in x; ¢ pre- and
post-maneuver to expected changes in the ROE from a state transition matrix [34]]. Mathematical detail is provided in [18]. The
linearization of Equation[I0]means that this procedure is most appropriate for inter-spacecraft separations up to several hundred
kilometers, and not constellations at very large separations. However, on the shorter timescales between subsequent images that
are small fractions of the orbit, the linearized model and associated kinematic rules can still enable target tracking prior to SOD
initialization. In the future, more robust methods will be developed to fully treat the constellation case.

2. Batch Orbit Determination

The BOD module must produce orbit estimates for the system with sufficient accuracy to initialize the SOD module, using
only a single coarse estimate of the observer orbit and batches of bearing angles to each target from the onboard VBS. Typical
measurement collection periods are 1-2 orbits of the local observer. State estimation is accomplished using a new algorithm
[19] that applies the following procedure for each target.

First, a 1-D family of state estimates is computed for specified samples of d\ using iterative batch least squares refinement,
where the refined state consists of target ROE and the observer semimajor axis. Usage of this sampling approach is informed
by a system observability analysis: in swarms and formation-flying scenarios, there is the underlying assumption of a weakly
observable mode in mean along-track separation [16], whereas for more general configurations (e.g. constellations) this is
not always the case. A typical choice is to divide the expected state space for JA into 100-200 intervals in the positive and
negative directions. The output state estimate is that which produces the least measurement residuals. A conceptual illustration
for a single target is shown in Figure [5] It is important to minimize computation costs of sampling and thus, an analytic
dynamics model is used when propagating the refined state to each measurement epoch. In LEO, the .J» oblateness perturbation
is generally dominant. However, in lunar and cislunar scenarios, Jo, J3, and third-body Earth and solar gravity can all be
significant. Long-term effects due to these terms as described in Section |ll|are therefore included in the lunar BOD module.

Next, the measurement noise matrix for each measurement (denoted R,s) is estimated using the measurement residuals
corresponding to the final state estimate. Then, the covariance for estimated state components P.g is computed via
Pest = Yve;(vas + }/I)riorppriorYT )Y*T (13)
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where Y3 is the pseudoinverse of the measurement sensitivity matrix for estimated state components, Yo, is the measurement
sensitivity matrix for a-priori information (e.g. orbit elements other than the semimajor axis), and P, is the uncertainty of
a-priori information. This formulation allows BOD to seamlessly transition between domains where uncertainty is driven by
sensor performance or by errors in the a-priori information.

3. Sequential Orbit Determination

The SOD module continually refines orbit estimates and auxiliary state estimates of the observer and its targets by seamlessly
fusing measurements from all observers transmitted over the ISL. SOD applies the bearing angle measurement model and
numerical GVE dynamics model from Section [lIl within a UKF framework. The choice of a UKF with an OE and ROE state
parametrization provides crucial advantages. First, the weakly observable range to each target is primarily captured by J X in
most relative motion geometries, with other ROE being strongly observable [24]. This allows ARTMS to maximize accuracy by
applying separate state estimation techniques to different components (as seen in BOD). Second, the UKF is able to incorporate
nonlinearities in the dynamics and measurement models and preserves higher-order moments in the probability distribution,
which enables angles-only observer and target state convergence without maneuvers. Third, OE and ROE states vary slowly
with time, which allows accurate numerical integration of the GVE with large timesteps for efficient onboard orbit propagation.

Estimation of observer clock offsets and drift rates aids robustness and minimizes necessary ground contact. If clock offsets are
not regularly updated, there exists growing mismatches between the epochs of ISL measurements and the local ARTMS instance,



leading to measurement errors and subsequent state biases and divergence. Within SOD, clock offsets are accounted for by
propagating the local state estimate to the estimated epoch of the relevant measurement, determined by the observer’s onboard
clock for local measurements or by the received time-tag plus the estimated differential clock offset for remote measurements.
Inclusion of ballistic coefficients in the state reduces errors for high-altitude orbits (e.g. NRHO) in which SRP is a significant
perturbation. If differential ballistic coefficients are not included, biases in the ROE state estimates are produced.

Three additional features maximize performance. First, adaptive process noise estimation is used to improve convergence
speed and robustness to errors in the dynamics model [[16]. Second, the state definition is organized to exploit the structure of
the Cholesky factorization, reducing calls to the orbit propagator by almost a factor of two [35]. Third, measurements from
remote observers are assigned to local targets for distributed stereo-vision. Care must be taken to prevent the ambiguities of
assigning multiple measurements to the same target or assigning the same measurement to multiple targets. Selection criteria are
developed based on Mahalanobis distance thresholds for a) matching orbit estimates broadcast by remote observers to local orbit
estimates of targets, and b) matching estimated bearing angles of local targets to bearing angles broadcast by remote observers
[20]. Unambiguous correspondence must be achieved such that only one choice lies within a Mahalanobis assignment region
and no other choices lie within a Mahalanobis exclusion region. Figure[6|provides a conceptual example for b).
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IV. OBSERVABILITY ANALYSIS

Challenging observability conditions are encountered when estimating absolute and relative swarm or constellation orbits with
angles-only measurements [[19] [20] [36]. It is valuable to conduct an observability analysis for the lunar scenario to quantify
potential state estimation performance and inform the design and tuning of algorithms employed in ARTMS. This paper applies
the methodology of Koenig [19] [20] in which a lower bound for the state covariance matrix is computed from a measurement
sensitivity matrix and measurement noise matrix.

1. Numerical Observability Model

Consider a model providing inertial bearing angle measurements z as a function of system state a, local observer o, estimation
epoch t.y, and measurement epoch ¢, of the form

z(t) = h(x, 0, teg, t) (14)
Let bearing angles be provided at IV epochs %1, ..., 1y, collectively referred to as ¢,,. Additionally, let there be M swarm

observers o1, ..., 0p, collectively referred to as o,. Define the clock error ¢, (0, t) of observer o at epoch ¢. Then, the batch of
measurements received by a single observer from all swarm observers at specific epoch ¢ is

yo(t) = (h(m, 01, Lest, t + Cerr(oh t))) t 7h(m7 OM, test, T+ Cerr(OMv t)))—r (15)

and across all epochs, the batch of measurements received by a single observer from all swarm observers is

Y = g(T, 04, tesi, tm) = (Yo(t1), -+, Yol(tn)) " (16)

Here, measurements are obtained by numerical integration of the GVE for all swarm or constellation members, as per Section[I]
from t.y to each measurement epoch. Measurements are computed from the propagated orbits. It is then necessary to evaluate
the partial derivatives of measurements with respect to each component of x, for

dg(x, 05, test, tim
Vio(a) = 2 e lontn)|
€S

a7



where . are the estimated components of . The partial derivatives for each specific measurement are computed numerically
via central difference, using
Oh|  h(x+ Ax,0,teq,t) — h(x — Ax,0,tey, t) (18)
oxle 2||Ax||
where Az is a vector that is zero except for the specific state component where sensitivity is being evaluated. Sizes used for the
central difference are 10 m for semimajor axis, 1/a, for other orbit elements, 10 m for ROE, 0.1 seconds for clock drift, 1 ns/s
for clock drift rates, and 0.001 for ballistic coefficients.

The observability analysis is based on the following model [[19] for the relationship between the covariance matrix R for the
complete measurement batch, and the covariance matrix Pk for the estimated state, given by

R = Yeu(x) Py Y, (2) (19)

est
When Y is full column rank (true for all scenarios studied here), P.s can be computed as

Py = (Y.} () Yeu(@)) (Yo (2) RYeq (@) (Yol () Yeg () (20)

est est

The matrix R assumes independent measurements with identical noise distributions, no uncertainty in a-priori state information,
and perfect knowledge of dynamics [[19]. P.y thus provides an indication of a lower bound for achievable estimation accuracy
for the given number of measurements. If R, is the measurement noise matrix for a single measurement, R is

R, 0 ... O
0 R, ... 0

R=| . . . (21)
0 0 .. R

Observability of the complete system state is evaluated for five configurations, detailed in Tables|I{and[2] These configurations
vary the number of observers, semimajor axis, eccentricity, target range, and the magnitude of relative motion, echoing the
simulation scenarios explored in Section[V] Formation types are E/I-vector separated or passive safety ellipse (PSE), in-train
(IT) and constellation (CON). In-train formations are primarily separated in the along-track direction with de ~ &7 ~ 0 and
very little relative motion. PSE formations present more significant relative motion but retain similar absolute orbits for all
spacecraft. Constellations feature large orbit element differences between spacecraft.

Table 1: Chief spacecraft initial state for observability analysis.

Scenario  Type rsnzgirs gl\:;aerrl:/lers akm) e i) QO W) MO | cr () de() B
A LLO 4 2 18499  0.0497 890 1660 2700 00 1.0 1.0 0.02
B LLO 4 2 1849.9  0.0497 890 1660 2700 0.0 1.0 1.0 0.02
C ELFO | 4 4 5053.7  0.6067 634 0.0 270.0 0.0 1.0 1.0 0.02
D ELFO | 4 4 5053.7  0.6067 634 0.0 2700 0.0 1.0 1.0 0.02
E NRHO | 4 4 51350 09298 674 1641 1017 0.0 1.0 1.0 0.02

Table 2: Deputy spacecraft initial states for observability analysis.

Scenario  Type | ada  adA (km) adey adey (km) adiy  adiy (km) | Scerr (5)  Oder(™2) 6B
A PSE | 0 50, 100, 150 0 15,3.0,45 0 1.5,3.0,45 0.1 1.0 0.005
B IT 0 50, 100, 150 0 0.15,0.30,045 0 0.15,0.30, 0.45 0.1 1.0 0.005
C PSE | 0 50, 100, 150 -0.5,05,0 05,0.5,-0.5 0 0.5,-0.5,-0.5 0.1 1.0 0.005
D CON | 0 -13240, 5400, -12850 0 0 0 -3870, -7730, 5560 | 0.1 1.0 0.005
E PSE | 0 50, 100, 150 -0.5,05,0 05,0.5,-0.5 0 0.5,-0.5,-0.5 0.1 1.0 0.005

Bearing angles are subject to 20 arcsec of 1o noise, representative of errors from modern nanosatellite star trackers [37]. Two
orbits of measurements are provided with 50 measurements per orbit at evenly-spaced intervals. Included perturbations during
orbit propagation for measurement generation are a 5x5 lunar gravity model [38]], a cannonball SRP model with cylindrical
lunar shadow, and third-body Earth and Sun gravity. The dynamics numerical integration timestep is 60s. The spacecraft are
modeled as 129 CubeSats with deployable solar panels, with a constant mass of 12kg and constant sun-facing cross-sectional
area of 0.12 m~.



2. Numerical Results

Tables [3] and [] present results from the observability analysis, where ‘-” indicates that the state component was not estimated.
The bar over each state component indicates an average value across all observers and targets. The analysis indicates that
absolute and relative orbits are observable using angles-only measurements, as are clock offsets and ballistic coefficients when
required. Absolute and relative orbits can potentially be estimated with position uncertainty on the order of hundreds of meters.
Clock offsets can potentially be estimated to within one second. Recall that this analysis ignores the effects of uncertainty in
the dynamics model and it is therefore expected that higher-fidelity simulations will display degraded performance for the same
number of measurements, especially for highly-perturbed scenarios (e.g. at low altitudes for spherical harmonic gravity) or
scenarios with long orbit periods and propagation times (e.g. at high altitudes in NRHO orbits).

Trends of the observability analysis correspond to expectations. Specifically, Scenario A displays improved uncertainty in
absolute and relative position estimates compared to Scenario B, due to more observable relative motion displayed by the PSE
formation. Increasing orbit eccentricity as in Scenario C improves absolute and relative position uncertainty because additional
relative motion is introduced by the eccentricity. Scenario D displays improved absolute position uncertainty due to the more
distinct absolute orbits and measurement baselines of the constellation; however, relative position uncertainty is worsened by the
much larger target ranges. Scenario E displays large tangential position uncertainties due to comparatively slow orbit dynamics
and measurement variations at high altitudes. Higher altitudes make the clock offset more challenging to estimate, while clock
drift rate uncertainty is improved by higher eccentricities.

Table 3: Absolute state component uncertainty from quantitative observability analysis.

Scenario ‘ Orp (M)  Opp (M) Ory (M) Oyp (mm/s)  Oyp (Mm/s)  Gyy (Mm/s)

Gy (8)  Taoy (B2) \ 0B

A 91 300 180 94 160 360 - -
B 110 650 110 94 190 360 - - -
C 140 240 120 21 32 14 - - -
D 46 94 82 5.4 9.3 6.9 - - -
E 290 860 520 32 3.4 35 - - -

Table 4: Relative state component uncertainty from quantitative observability analysis.

Tocey (M) Tsa, (12) | o5

Scenario ‘ Osrg M) Og5rp (M) T5pn (M) Tgyp (mm/s)  Tgyp (mMm/s) gy, (mm/s)

A 15 270 14 5.6 14 49 46 2.4 -
B 37 740 13 6.0 35 3.0 55 32 -
C 61 92 2.7 8.9 5.5 0.24 190 2.0 1.3 x 1073
D 150 140 160 23 24 27 130 1.6 4.1 x 1072
E 200 140 0.60 22 0.54 0.031 1600 1.7 4.7 x 1076

V. SIMULATION
1. Simulation Scenarios

Five simulation scenarios are developed to validate the observability analysis and demonstrate the feasibility of autonomous
angles-only navigation in lunar orbit for multi-agent space systems. Each scenario explores a different form of distributed lunar
mission and consists of four spacecraft. Initial conditions are given in Tables[TJand[2] Absolute orbits are specified for a ‘chief’
observer and relative orbits are specified with respect to this observer.

Scenarios A and B present swarms in quasi-frozen low lunar orbits (LLO). Quasi-frozen orbits are specifically designed to ensure
the mean orbit eccentricity vector remains nearly constant over time [39]. Applications include lunar monitoring, networking
and distributed aperture science. Scenario A considers a PSE formation with significant relative motion. Scenario B considers
an in-train formation with little relative motion.

Scenarios C and D present swarms in an elliptic lunar frozen orbit (ELFO). Scenario C is a PSE formation and Scenario D
is a flower constellation. Flower constellations consist of repeating ground tracks with phased satellites that follow the same
trajectory relative to the rotating frame of the central body [40]. Applications include lunar communications, observation, and
global positioning systems.

Scenario E is a PSE formation in a 9:2 synodic L2 south near-rectilinear halo orbit (NRHO). The NRHO is highly elliptical,
and NASA’s Lunar Orbital Platform-Gateway (LOP-G) is expected to apply a similar orbit. Applications for a swarm therefore
include autonomous monitoring and remote sensing in support of LOP-G operations.

Each scenario presents very different measurement conditions. The LLO orbit is eclipsed for 30% of the orbit period, leading to
large measurement gaps. In addition, orbit periods range between 2 hours (LLO), 9 hours (ELFO) and 150 hours (NRHO). The



frequency of camera measurements is scaled to provide ~60 measurements per orbit, up to a maximum of 30 minutes between
measurements. The SOD dynamics integration step size is scaled to provide ~200 steps per orbit, up to a maximum of 300
seconds per step. Absolute orbits are plotted in Figure[7]and relative orbits are plotted in Figure[§]

In Scenarios A and B, the leading and trailing spacecraft with respect to u act as observers. In Scenarios C-E, all spacecraft
are observers. In Scenarios A-C, observer VBS are aligned with the (anti-)velocity direction depending on where most targets
are visible. In Scenarios D and E, relative motion is large and not all targets remain within the FOV. In response, observers
perform active tracking and point at each target in a cyclic fashion in successive measurement epochs. An autonomous BOD
initialization is used for Scenarios A-C while an external ground initialization is used for Scenarios D and E. Conditions are
summarized in Table

Table 5: Summary of simulation conditions.

Scenario | Abs. Orbit  Rel. Orbit  Period  Sim. Length | Eclipses  Observers  Attitude | IMP Meas. ~ SOD Dyn. Initialization

Frequency Step Size Method
A LLO PSE 2 hrs 24 hrs 30% 2 Passive 120 s 30s BOD
B LLO 1T 2 hrs 24 hrs 30% 2 Passive 120 s 30s BOD
C ELFO PSE 9 hrs 48 hrs 0% 4 Passive 480 s 120 s BOD
D ELFO CON 9 hrs 48 hrs 0% 4 Active 480 s 120 s Ground
E NRHO PSE 150 hrs 600 hrs 0% 4 Active 1800 s 300 s Ground
x10*
o
s a4
500 - 24
£, Fomo E-a -
- -
o . 5.
- ‘ N
o vt x10* 0 2 /4*»/;0 2 <104
x [km] y [km]
(a) Quasi-frozen LLO (Scenario A) (b) ELFO flower constellation (Scenario D) (¢) NRHO (Scenario E)

Figure 7: Absolute orbit of the chief satellite for each simulation case in the MCI frame. For the quasi-frozen LLO, eclipses are in blue and
non-eclipse regions are in red. For the flower constellation, each color corresponds to a different satellite.

2. Data Generation

Ground truth positions and velocities of the four-spacecraft system are obtained by numerically integrating the GVE. Included
perturbations are summarized in Table[6} As before, spacecraft are modeled as 12U CubeSats with with a constant mass of 12kg
and constant sun-facing cross-sectional area of 0.12 m2. Target visibility and visual magnitudes are computed using a model
which takes into account the observer-target-Sun phase angle and variations in reflected flux from different satellite surfaces
[41]. Ground truth clocks and clock noise are propagated using the Galleani model with includes both frequency and phase
noise [42]. Clock quality emulates the Microsemi SA.45s chipscale atomic clock with an Allan deviation of 10~ for 7 = 1
second [43]]. Noise values of ¢; = (3 x 10719)2 and ¢, = (3 x 1071%)? are applied in the clock model.

Measurements are then synthesized from the ground truth. VBS images are generated using 3D vector graphics in OpenGL
[44]. Visual magnitudes, angles, and proper motions of stars are obtained from the Hipparcos star catalog and objects within
the camera FOV are rendered using Gaussian point spread functions. Mismatches between known and true camera parameters
induce additional (5", 5"") bearing angle errors (1o). Spacecraft possess (6”,6”,30") of x-y-z attitude control error (1¢). LLO
simulations also include a CubeSat star tracker in the loop. Input images are retrieved from a Blue Canyon Technologies Nano
Star Tracker as stimulated by the Stanford SLAB Optical Simulator (OS). The OS is a variable-magnification testbed consisting
of two lenses and a microdisplay. Synthetic space scenes are generated and shown on the display and by moving the lenses and
display relative to each other, the VBS under test is stimulated with appropriate magnification. The OS is calibrated such that
the VBS image is similar in radiosity and geometry to what would be observed in orbit. Development, calibration, and usage of
the OS are detailed in [44]] with achievable errors between desired and measured bearing angles of less than 10”.

Inputs are processed by ARTMS in the form of multi-satellite simulation in MATLAB Simulink and C++. The SOD dynamics
integration timestep and IMP measurement frequencies are provided in Table 5] for each scenario. Perturbations modeled within
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Figure 8: Relative positions of targets with respect to the primary observer in the RT plane (top) and RN plane (bottom). The black circle
shows relative positions at apolune and the white square shows relative positions at perilune.

SOD and errors in the coarse observer absolute state initialization (from the DSN) and relative state initialization (Scenarios
D/E only) are summarized in Table[6] Autonomous BOD initialization occurs after 4 hours when applied. Covariance matching
is applied in SOD for adaptive process noise and empirical accelerations are not estimated.

Table 6: Summary of dynamics models and state initialization errors.

Lunar gravity model ~ Third body  Solar radiation State Initialization Error (1o)

Model ‘ (GRGM1200A [38]) gravity pressure H RTN position RTN velocity B Clock drift ~ Clock drift rate

Ground truth 60x60 Earth, Sun Cannonball - - - -
SOD 10x10 Earth, Sun Cannonball (100, 1000, 100) m (0.1, 1,0.1) m/s  0.004 1s 1 psl/s
BOD 3x3 Earth, Sun - (100, 1000, 100) m (0.1, 1, 0.1) m/s - - -

3. Simulation Results

Mean estimation errors for all simulation scenarios are summarized in Table [J{8] where steady-state values are computed
as averages across the final orbit. As expected, state estimation errors produced by the simulations are of a similar order but
somewhat larger than those in Tables[3}4] because the observability analysis assumed perfect knowledge of dynamics and a-priori
state information. Performance differences are most significant in the highly elliptic orbits of Scenarios C-E, in which the filter
dynamics model is used to propagate states for longer time periods. However, the trends displayed when comparing different
scenarios are similar, which aids in validating the analysis methods. For example, Scenario B presents worse performance than
Scenario A for both methods, and Scenario C presents better relative orbit results but worse absolute orbit results than Scenario
D for both methods. The reasoning behind these trends and others is discussed below.



Table 7: Mean state error and 1o state uncertainty at steady state for the observer absolute state estimate.

k OTR orr orn SvR Svp N
Scenario (m) (m) (m) (mm/s) (mm/s) (mm/s)
A 9+ 150 355 £+ 326 -2+ 142 29 £ 132 —55 + 262 12 + 120
B —66 + 205 98 4 496 —1+186 14 + 181 60 4 360 29 4+ 157
C 253 + 2513 538 £3507 —711 41549 46 £ 487 20 £ 564 —20 £ 165
D —151 £493 40 + 535 50 4 383 14137 14 + 156 —24+ 128
E —4353 £ 6170 749 £2606 2777 £3089 —36 £ 50 13+ 31 2416
Table 8: Mean state error and 1o state uncertainty at steady state for target relative state estimates.
Scen  Tar OTR orp orn SvR Svp XN Clock Clock Drift
ario get (m) (m) (m) (mm/s) (mm/s) (mm/s) Drift (ms) Rate (us/s)
1 27+ 18 —274 4+ 136 1£7 0+14 —16 £ 21 1+£6 —-3+10 —0.28 £0.41
A 2 17+ 12 —196 £ 97 0+4 0+9 —-13+14 1+4
3 716 —95 £ 55 —-1+2 0+5 —-8+7 0+2
1 4415 —47+134 —2+5 3+11 —4+17 0+5
B 2 134+ 32 —1114+234 -3+10 5+21 —8+33 1+9
3 18 £ 49 —126 4+ 312 —4+15 7431 —9£47 14+13 —6 + 22 —1.57+2.79
1 —6+41 9467 1£10 —-1+12 1+£12 0+£2 14+21 0.15+£0.24
C 2 —11+79 22 +132 24+19 —3+23 1+22 0t4 1420 0.134+0.23
3 —20 + 122 33+ 199 3+£29 —2+ 36 3432 0+5 8+ 21 0.26 +0.25
1 —121+£1620 —316 £ 1617 —129 +944 —89+£563 —85+440 31+£213 233 £ 780 —6.23 £ 16.53
D 2 —288 £1536  —267 £ 1656 63 £ 1335 —24 £ 401 10 £+ 467 19 +£ 275 164 £ 1988 0.26 &+ 34.17
3 —35 £ 1925 —222 41736 —2754+1439 —16£630 —5 4454 27+330 380+ 1168 10.81 £ 24.00
1 —194+35 —10 443 15+ 15 0+1 0+1 0+0 —719 £ 161 —0.47£0.28
E 2 —89+ 96 —104 £ 80 178 £ 119 0+2 1+£2 1+1 93 £+ 143 0.08 £ 0.27
3 —54 + 123 —31 4+ 106 106 4+ 162 0+2 2+3 0+1 1020 £ 139 0.20 £ 0.26

a). Scenario A (PSE Formation in LLO)

Figure [9 presents relative navigation results for Scenario A, where time ¢ = 0 in the plot corresponds to the initialization of
SOD. The majority of position error occurs in the along-track direction as it is analogous to the weakly observable target range.
Other components of target motion are more observable and see the correspondingly smaller error. Differential clock offsets

and drift rates are effectively estimated - despite large initial errors, offsets are estimated to within 0.01 s and drift rates to

within 0.5 ps/s. Convergence to steady state is achieved after approximately 5 orbits even in the presence of eclipse periods,

indicating good performance under challenging measurement conditions. State uncertainties observe periodic behavior due to

eclipse periods during which measurements are unavailable.
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Figure 9: Relative orbit estimation errors for the chief observer in Scenario A. Statistics are computed over the last orbit.

b). Scenario B (In-train Formation in LLO)

Performance is degraded in the in-train formation compared to the PSE formation. In-train formations are comparatively more
challenging to track because relative motion is small and d) is only weakly observable. Nevertheless, it is still possible to
achieve orbit determination and clock synchronization using angles-only measurements. Multiple observers provide improved

performance via stereo measurements and orbit eccentricity introduces additional relative motion between in-train targets.



c). Scenario C (PSE Formation in ELFO)

Orbit estimates for the ELFO swarm are significantly more uncertain than in LLO. Reasons for these trends can be found
in Figure [I0] which shows mean estimation errors, mean relative acceleration, mean relative velocity, and mean target range
throughout the final orbit and at apolune and perilune specifically. There is a clear correlation between absolute orbit estimation
error and the relative acceleration of the satellites within the swarm or constellation: as the relative acceleration becomes larger,
absolute orbit estimation is improved. This is because ARTMS can exploit larger differences in relative perturbations and
nonlinear dynamics to resolve absolute orbit ambiguity. Thus, at higher altitudes with weaker gravity (produced by more elliptic
orbits), absolute orbit estimates are degraded compared to the LLO case. Furthermore, larger relative velocity leads to larger
relative orbit estimation errors. When relative motion is faster, the propagated error arising from dynamics modeling uncertainty
will be larger between measurement updates. Larger gravitational accelerations near perilune also increase the deviation of filter
dynamics from the true dynamics, which reduces filter performance. Note that in the LLO scenarios, relative state estimation
errors are larger at the apolune, which appears to be a contradiction at first glance. However, this is due to the eclipse periods
before the apolune passage (c.f. Figure[7) during which measurements are unavailable and the covariance increases.
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Figure 10: The mean standard deviation of the absolute position estimate (upper left), relative position estimate (upper middle), and relative
clock estimate (upper right), with the mean magnitude of relative acceleration (lower left), relative velocity (lower middle), and target range
(lower right).

d). Scenario D (ELFO Flower Constellation)

Absolute state estimation results for the flower constellation are shown in Figure [I2] Compared to Scenario C, absolute orbit
estimates are much improved. This is because the satellite orbits are much more distinct, with subsequently larger differences in
orbit perturbations that ARTMS is able to exploit and more distinct measurement baselines. However, relative orbit estimates
are worsened in the constellation. Figure[I0|shows the relationship between relative state estimation accuracy and target range,
where estimation accuracy decreases as the target range increases. This is because as the target range becomes larger, the VBS
measurement error corresponds to larger uncertainties in the ROE state. Differential clock offsets are coupled with the ROE state
via the bearing angle measurement model (c.f. Eq.(I3)) and are estimated by comparing differences in target bearing angles as
measured by distinct observers, and this effect therefore increases the uncertainty of differential clock estimates also. Overall,
the good absolute orbit determination accuracy achieved in the constellation case indicates the potential of leveraging ARTMS
to provide lunar PNT services. However, new challenges also arise from the larger variation in target relative positions. For
typical FOV, targets can no longer be consistently measured by passive camera tracking and more complex active target tracking
becomes necessary to achieve regular swarm measurements. This paper assumes that after initialization, VBS are pointed at
each target in sequence to obtain regular measurement updates. However, this is not necessarily optimal and does not treat the
issue of pre-initialization target tracking for which target state information is unavailable. The development of new, efficient
task distribution and attitude optimization algorithms for target tracking will therefore play a key role.

e). Scenario E (PSE Formation in NRHO)

Figure [T2] presents absolute state estimation results for Scenario E. The NRHO estimation results are characterized by periodic
growth and shrinkage of state estimate covariance. Particular challenges are faced near apolune, where uncertainties increase to
several kilometers. This is due to the extremely slow system dynamics and smaller relative accelerations. Measurements are thus
very similar for successive IMP samples and the information provided by measurement updates is limited. Time synchronization
similarly proves challenging and clock errors venture outside the 1o covariance bounds. The ground truth clock model includes
random process noise [42]], the ARTMS clock initialization includes errors, and the long state propagation times produce greater
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Figure 11: Absolute orbit estimation errors for the chief observer in Scenario D. Statistics are computed over the last orbit.

inaccuracies during SOD clock propagation. Furthermore, the limited effectiveness of measurement updates makes it difficult to
maintain robust clock estimate convergence. Modifications may be required to improve NRHO clock estimates such as sharing
of clock estimates over the ISL (in addition to orbit estimates and bearing angles) in a more distributed fashion. Degradation of
relative state estimation is minimized by comparison due to the fully connected measurement network of four swarm observers.
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Figure 12: Absolute orbit estimation errors for the chief observer in Scenario E. Statistics are computed over the last orbit.

VI. CONCLUSION

This research presents an architecture for autonomous, distributed navigation and timekeeping for multi-agent space systems in
lunar orbit, using angles-only measurements obtained by onboard cameras. The proposed Angles-only Absolute and Trajectory
Measurement System (ARTMS) consists of three novel algorithms: Image Processing, which identifies targets in images
using multi-hypothesis tracking and computes their bearing angles; Batch Orbit Determination, which computes a system state
initialization from bearing angles batches using range sampling techniques; and Sequential Orbit Determination, which uses an
unscented Kalman filter to refine the system state, seamlessly fusing measurements from multiple observers.

Theoretical performance bounds from a numerical observability analysis and computation of the estimated state covariance
show that depending on the absolute orbit and system geometry, absolute orbits are observable with an accuracy on the order
of hundreds of meters to several kilometers, while relative orbits can potentially be estimated with errors of several hundred
meters in A and tens of meters for other relative orbit elements (ROE). Clock offsets are observable to within one second
with angles-only measurements. The observability analysis is validated by high-fidelity camera-in-the-loop simulations of five
different scenarios in a low lunar orbit (LLO), elliptic frozen orbit (ELFO), and near-rectilinear halo orbit (NRHO). For the
LLO scenarios, both absolute and relative state estimates successfully converge even in the presence of eclipse periods and in
a less observable in-train configuration. For the ELFO scenario, an absolute orbit estimation error of 250 m is achieved in a
flower constellation, more than 10 times smaller than errors for a comparable passive safety ellipse formation. Constellations
are a promising application for ARTMS because satellite orbits are very distinct, resulting in improved system observability,
but new active target tracking algorithms are likely required to achieve regular target measurements. In the NRHO scenario,
the high eccentricity leads to highly variable dynamical speeds and periodic covariance growth and reduction. However, by
increasing the number of measurement cross-links within the swarm, relative positions are estimated with 100 m accuracy and
absolute orbit convergence is maintained. Overall, simulations display promising navigation performance for a variety of system
geometries and orbits in the lunar region.



Future research areas include optimization of observer attitudes to ensure that targets remain in view for consistent observation
at large separations and when in very distinct orbits. Including inter-satellite range measurements in addition to the angle mea-
surements will also be explored, which is expected to improve both orbit and clock offset estimation accuracy by compensating
for the weakly observable target range in angles-only navigation.
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