
Estimating wheel slip of a planetary exploration rover
via unsupervised machine learning

Justin Kruger
Stanford University
Stanford, CA, 94305

971-273-8878
jjkruger@stanford.edu

Arno Rogg
NASA Ames Research Center

Moffett Field, CA, 94035
650-604-1045

arno.rogg@nasa.gov

Ramon Gonzalez
robonity: worldwide tech startup
Calle Extremadura, no. 5, 04740
Roquetas de Mar, Almeria, Spain

ramon@robonity.com

Abstract—Planetary exploration rovers often encounter imper-
fect traction and wheel slip, which negatively impacts navigation
and in the worst case can result in permanent immobilization.
Recent studies have applied machine learning to estimate rover
wheel slip, which this paper extends via the implementation of
three unsupervised learning algorithms: self-organizing maps,
k-means clustering, and autoencoding. Unsupervised learning
is preferred since labelled training data may be risky or time-
consuming to obtain on site; each algorithm classifies the rover’s
current slip state into one of several discrete categories. Proprio-
ceptive sensors are used to avoid added complexity and prevent a
reliance on visual odometry. The algorithms are validated using
sensor data from a planetary rover driving on a sandy incline,
and performance is evaluated for different velocities, sensor
inputs, slip classes, algorithm parameters, and data filters. Self-
organizing maps (SOM) demonstrate the best slip classification
accuracy, achieving 97% immobilization detection in the ideal
two-class case. At rover-like speeds of 0.10 m/s, 88% accuracy
is demonstrated for three classes. For ten slip classes, 71%
accuracy is obtainable. Compared to SOM, k-means loses 5-
30% accuracy and autoencoders lose 2-10% accuracy. SOM
is most computationally intensive while k-means is least. An
analysis of significant parameters for algorithm tuning displays
accuracy benefits of up to 25%, and mis-classifications can
be further reduced by modifying class boundaries. The al-
gorithms are generic and can be trained for different terrain,
environment or vehicle parameters, and although some labelled
data is needed to directly associate unsupervised clusters with
slip classes, it is significantly less than what a fully-supervised
algorithm requires. Unsupervised learning is thus considered
promising for robust real-time rover slip estimation.

TABLE OF CONTENTS

1. INTRODUCTION . 1
2. UNSUPERVISED MACHINE LEARNING 2
3. DATA COLLECTION . 3
4. RESULTS AND DISCUSSION . 4
5. CONCLUSIONS . 6
ACKNOWLEDGMENTS . 7
REFERENCES . 7
BIOGRAPHY . 8

1. INTRODUCTION
Planetary environments such as Mars and the Moon are chal-
lenging terrain for rovers. Terrain is often very loose or steep,
resulting in sub-optimal tractive performance and wheel slip.
This negatively impacts rover localization and in the worst
case may lead to rover immobilization. The Mars Exploration
Rover ‘Spirit’ became permanently embedded in 2009 after

U.S. Government work not protected by U.S. copyright

its wheels could not gain traction in a sand dune, eventually
ending its mission, while in 2005, the ‘Opportunity’ rover
spent many weeks extracting itself from a similar event [1]
[2]. NASA’s ‘Curiosity’ rover opts to avoid high-slip areas by
driving over rock, at the cost of increased wheel damage [3]
[4]. Even though avoidance may be possible – or preferable –
it is often necessary for rovers to navigate high-slip terrain in
order to reach their scientific targets. Embedding avoidance
then becomes a crucial aspect of rover safety, for which
estimation of wheel slip is a key element [5] [6] [7] [8].

Wheel slip is generally defined as s = (ωr − v)/ωr, where
ω is angular velocity of the wheel, r is its radius, and v
is the linear velocity of the wheel’s center [5]. Excessive
slip can lead to vehicle slowdown, navigational inaccuracy,
inability to reach objectives, or permanent entrapment. Thus,
improving the ability of a rover to quantify its slip is vital. If
rovers can independently detect slip when it occurs they will
be able to travel with greater speed, safety and reliability; a
primary characteristic of rovers is their autonomy, and more
reliable slip estimation will allow future missions to achieve
more ambitious scientific objectives without the current re-
quirement of extensive human supervision [9].

Many different approaches to slip estimation have been
suggested, employing various combinations of sensors and
algorithms. In the simplest case, wheel velocities can be
compared to an integrated accelerometer reading, but this is
subject to drift [10]. Others have extended this by using EKFs
to fuse encoder, IMU, and GPS information with a vehicle
dynamics model [11]. While this can be accurate (even
without GPS, which a planetary exploration rover cannot
rely upon), performance is dependent on the accuracy of the
model and knowledge of terrain parameters. Motor current
measurements are often employed: Curiosity uses a high
current threshold to detect embedding and past experiments
have combined encoder, IMU and current measurements to
detect all-wheel slip [12] [13]. However, this approach is
less effective on slopes where current is naturally higher.
Many of the most developed techniques for slip estimation
rely on visual odometry (VO), tracking landscape features or
a rover’s wheel traces [7] [14] [15] [16]. This has proven
effective, although performance is heavily influenced by ter-
rain features and lighting. VO can also be computationally
intensive and places a low limit on rover speed. Other
exteroceptive solutions, such as localization via satellite or
radio beacons, are impractical for a rover. Gonzalez and
Iagnemma present a discussion of these and other approaches
in their state-of-the-art survey [8].

In light of these difficulties, a more recent area of interest
is machine learning (ML), with the goal of applying ML
algorithms to discover patterns in proprioceptive rover sensor
inputs and thus classify its slip state into discrete classes.

1

Proprioceptive sensors are preferred over VO as they are not
dependent on lighting and terrain features and do not require
computationally-expensive image processing. Gonzalez et al.
obtained promising results with this approach, using Support
Vector Machines, Self-Organizing Maps and Artificial Neural
Networks to classify rover slip as low, medium or high [17].
Similar studies have implemented ML regression to provide
a continuous slip estimate, or have applied data aggregation
and Bayesian tracking in an unsupervised slip classifier that
improves online [18] [19]. These initial explorations have
found that ML techniques are fast, applicable to a wide range
of environments, and can provide good accuracy.

This study builds upon this work by investigating three ML
algorithms in more detail, evaluating their performance for
rover slip classification. Specifically, it focuses on the less-
investigated area of unsupervised learning. Although super-
vised learning will generally achieve better accuracy, such
methods can be impractical for rovers as they require labelled
training data, which could be risky or time-consuming to ob-
tain on site [17]. The three algorithms under investigation are
self-organizing maps (SOM), based on the promising results
of Gonzalez et al.; k-means clustering (KM), as it is one
of the most common unsupervised classifiers; and autoen-
coding (AE), which is an oft-used dimensionality reduction
technique not yet applied to this context. By examining the
performance of these algorithms for a greater range of param-
eters, a more definitive recommendation can be made towards
the potential suitability of ML-based rover slip estimation. A
discrete (as opposed to continuous) slip estimate is used as
it is a much easier problem for unsupervised learning to deal
with while still providing useful information to the rover [20].

2. UNSUPERVISED MACHINE LEARNING
Unsupervised algorithms aim to detect and exploit similari-
ties in data to cluster similar inputs together – in this case,
operating on a vector of rover sensor inputs to classify its cur-
rent slip state. The algorithms in this study were implemented
in MATLAB R2017a, running on a PC with an i7-5500U 2.4
GHz CPU and 8 GB RAM.

Self-Organizing Maps

The SOM algorithm manipulates a network of neurons. An
initially-unordered neural network is gradually moulded into
a topologically-ordered map of neuron clusters, emulating
the way sensory inputs are mapped in the brain. A brief
description of SOM is provided below, with additional math-
ematical detail available from Kohonen [21] and Obermayer
and Sejnowski [22].

Let q = [q1, q2, ..., qi]
> be an input vector of i-dimensional

data, and let n = [n1, n2, ..., nk] be a list of k total neurons,
arranged in a 2D grid. Denote the weight vector of neuron
nj by wj = [wj1, wj2, ..., wji]

>, describing its position
in the input space. First, neuron weights are randomly
initialized. Then, q is compared to each wj to find the best-
matching neuron. Often, the L2-norm c(q) between q and
wj is used. The ‘winning’ neuron is excited, along with
its spatial neighbors, via a time-varying Gaussian function
hj,c(q). Neurons within the influence of the winning neuron
have their weights updated via:

wj(t+ 1) = wj(t) + η(t)hj,c(q)(t)(q−wj(t)) (1)

where t is the iteration number, and η is a learning rate that
decreases with time to encourage convergence of the map.

It is also advantageous to begin with a large neighborhood
that shrinks with time. In this fashion, input vectors are
matched to neurons, which excites those neurons’ neighbors
and updates their weights. Over many iterations, neurons
activated by similar inputs become topologically clustered.
Clusters are separated by larger inter-neuron distances.

Network performance is evaluated by creating a network
semantic map M. First, a class must be assigned to each
sample input used for training. Then, the class C of the
sample qm that best matches the weight of neuron nj is
assigned to node j in M [17]. For robustness, the final class
of each neuron in the network is the mode of classes of the
set of p best-matching inputs. The trained semantic map (i.e.
neurons paired with labels) can then be used to return to class
of any test input. This is simply the class of the neuron which
the input stimulates (i.e. the neuron whose weights are closest
to the input vector). Note that while SOM is unsupervised,
some training data is required to create the semantic map.

K-Means Clustering

The well-known k-means algorithm partitions a set of data
into k clusters [17]. Initially, k cluster centers are randomly
positioned in the input space. A new point xi is added to
whichever cluster is closest. The mean of that cluster is then
recalculated to take the new point into account. Thus, at
every stage, the ‘k-means’ are the means of the clusters they
represent. The algorithm iterates until cluster centers stop
moving and points are no longer being reassigned to different
clusters. There is no guarantee that the optimum will be found
with this algorithm, so k-means is often run multiple times
with the final result being the one that minimizes the distance
between all points and cluster centers.

After creating clusters, performance can be evaluated by
associating each cluster with a class (in this case, the mean
class of the points that comprise it). Then, the class of an
input vector is the class of the cluster whose center is closest.
As with the SOM algorithm, KM is unsupervised, though
some labelled training data is needed to directly associate
each cluster with a slip class.

Autoencoders

Autoencoders are artificial neural networks that aim to com-
press data into a shorter, encoded form, which can later be
uncompressed into something closely matching the original
[23]. The simplest arrangement of autoencoder consists of
an input layer of neurons, an output layer, and one or more
connecting hidden layers. The output has the same number
of nodes as the input so as to reconstruct the original data.
The autoencoder – by learning a compressed representation
– is discovering notable data features, which can be lever-
aged to separate inputs into classes. Autoencoders learn in
an unsupervised fashion, in contrast to similarly-configured
supervised networks such as multilayer perceptrons.

The encoding and decoding layers can be defined as transi-
tions φ : X → F and ψ : F → X . For a single hidden
layer, the encoder takes an input x ∈ Rm = X and maps it to
y ∈ Rn = F :

y = σ(Wx+ b) (2)

Here, σ is an element-wise activation function (usually sig-
moid or linear); W is a weight matrix; and b is a bias vector.
Then, the decoder maps the image y to the reconstruction x′

of the same shape as x:

x′ = σ′(W′y + b′) (3)

2

where σ′,W′ and b′ for the decoder may differ from the
encoder. Autoencoders are trained to minimize reconstruc-
tion errors, which is often the squared error averaged over
some input training data set. If the feature space F is of
lower dimension than the input space X , the feature vector
φ(x) can be regarded as a compressed representation of x.
Conversely, ‘sparse’ autoencoders have more hidden neurons
than input neurons – to avoid over-activation of hidden units,
only a small number are permitted to be active at one time,
thus forcing hidden units to associate with specific data
features [24]. Autoencoders can be layered to form different
network structures and this paper applies two stacked sparse
autoencoders: the first is trained on the input data, while
the second is trained on the encoded features from the first.
Additional layers did not improve results, likely due to the
low dimensionality of the input data.

A final softmax layer is used to enable classification of inputs.
This is a supervised training step in which a softmax function
learns to ‘squash’ the k-dimensional vector y of autoencoder
outputs into a k-dimensional vector σ(y), for which entries
are in the range (0, 1] and sum to 1 [25]. The output is
a probability distribution over k possible outcomes (i.e. k
possible slip classes); the class of an input is the outcome
with the highest probability.

3. DATA COLLECTION
Training and testing data was obtained from field trials of the
ProtoInnovations Lunar All-Terrain Utility Vehicle (LATUV)
[26]. The rover was driven up the sandy incline shown in
Figure 1, along a 15 m course at fixed speed. Ten experiments
were performed at velocities from 0.05 m/s to 0.25 m/s with
two trials at each velocity. The rover was fitted with an
RTK-GPS and an IMU near each wheel (Figure 2). On-
board telemetry included the positions and current draws of
all drive motors and steering motors. Data was synchronized
and logged at 10 Hz using custom ROS software [26].

Figure 1. Rover test environment.

To assess the accuracy of each ML algorithm, ground truth
slip was determined by comparing the rover’s RTK-GPS
velocity to wheel encoder angular velocity. To combat noise,
a median filter of length 10 (1 s) was applied to ground truth
data. Negative slip values were ignored (and are the result of
sensor noise). The following boundaries were assigned for
different numbers of slip classes:

• 2 classes: [0, 0.3, 1]
• 3 classes: [0, 0.2, 0.5, 1]
• 4 classes: [0, 0.15, 0.35, 0.6, 1]
• 5 classes: [0, 0.1, 0.25, 0.45, 0.7, 1]
• 10: [0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.55, 0.7, 0.85, 1]

Figure 2. Rover hardware.

These classes and boundaries can be considered trade-offs be-
tween the accuracy of slip classification and the performance
of an associated low-level traction controller, responsible for
adjusting rover wheel velocities to achieve slip compensa-
tion. Two classes allows simple embedding detection, while
ten classes approaches a continuous slip estimate. Further
discussion and preliminary results from these controllers are
presented by Gonzalez and Iagnemma in [20].

Two-fold cross validation was applied to randomly split the
data into a training set (used to develop the behavior of each
classification algorithm) and a testing set (used to test the
performance of each algorithm). This ensures that algorithms
are tested on unseen data. Since slip data possesses time
dependence, at most three consecutive data points were as-
signed to the training set before the next data point had to be
assigned to the testing set (or vice versa). Each result is the
average of ten runs of an algorithm.

Sensor Inputs

Many sensor inputs are available for use, including 24 IMU
measurements (6 DOF, 4 wheels) and 12 wheel readings
(velocity, acceleration and current of each wheel). Differ-
ent filters may also be applied, such as a sliding variance,
median or mean. To investigate which inputs may be most
appropriate or useful, the mean of the Pearson correlation,
distance correlation, and maximal information coefficient
[27] between each filtered input and ground truth slip was
calculated. This calculation was performed across a union of
all field trial data to avoid potential biases towards specific
velocities. The highest combined correlation measures for
various filters are presented in Table 1.

For maximum correlation, the set of motor current, x-
acceleration (mean filters), z-acceleration and angular veloc-
ity (median filters) appears optimal, averaged over all wheels.
The aforementioned work by Gonzalez et al. [17] also
proposes the set of x-acceleration, z-acceleration, pitch rate
(variance filters) and motor current (median filter) taken from
a single wheel. Note that although wheel angular velocities
are expected to be independent of slip, some correspondence
was present, likely due to non-ideal motor behaviors. It
is also useful to maintain independence between inputs to
provide maximum information to the classifier and for this
reason angular rates should be considered, despite being less
correlated. A variety of input vectors are tested in Section 4.

To illustrate slip behavior, Figure 3 plots two normalized
sensor inputs with rover ground truth slip for one test drive

3

Table 1. The average of the Pearson correlation, distance
correlation and maximal information coefficient of different

sensor inputs and ground truth slip.

Feature Wheel Filter Correl.
1 Motor current All None 0.643
2 Wheel ang. vel. Right rear None 0.614
3 IMU z-acc. All None 0.603
4 IMU x-acc. All None 0.437
5 IMU y-acc. Right front None 0.411
6 IMU pitch rate All None 0.248
7 Motor current Right rear Variance 0.430
8 Wheel ang. vel. Left front Variance 0.326
9 IMU yaw rate All Variance 0.302

10 IMU z-acc. All Variance 0.284
11 IMU x-acc. All Variance 0.282
12 IMU pitch rate All Variance 0.265
13 Motor current All Mean 0.692
14 IMU z-acc. All Mean 0.652
15 Wheel ang. vel. Right rear Mean 0.643
16 IMU x-acc. All Mean 0.635
17 IMU y-acc. Right front Mean 0.532
18 IMU pitch rate Right rear Mean 0.488
19 Motor current All Median 0.689
20 IMU z-acc. All Median 0.657
21 Wheel ang. vel. Right rear Median 0.656
22 IMU x-acc. All Median 0.625
23 IMU y-acc Right front Median 0.538
24 IMU pitch rate Left rear Median 0.500

at 0.25 m/s using telemetry from the front left wheel. The
median drive current is consistently correlated with slip lev-
els, especially for medium and high slip – current rapidly
increases as the rover attempts to advance and find traction.
The variance of the yaw rate is roughly correlated with low
and medium slip levels, whereas at high slip, the variance
rapidly tends to zero. This is because the rover quickly
embeds itself, resulting in much less motion. In this sense,
different sensors and filters provide different information that
may be leveraged by ML algorithms.

Algorithm Parameters

Each ML algorithm allows a variety of input parameters
which can be tuned for optimal classification performance.
During implementation, these parameters were investigated
individually to observe their effects on classification accuracy
for different rover velocities and slip classes. A set of near-
optimal parameters could then be experimentally determined
for each algorithm and data set, which were used to obtain
the final training and testing results. This is discussed further
in Section 4.

4. RESULTS AND DISCUSSION
Sensor Input Selection

Table 2 presents classification accuracy for eight sensor sets.
To avoid velocity effects, tests were performed on a union
all field trial data using default algorithm parameters. Using
mean sensor readings from all wheels provides a boost in
accuracy, most significantly for k-means. For SOM, the

Figure 3. Filtered sensor measurements vs ground truth slip
at 0.25 m/s. Both are normalized to lie between [0, 1].

choice of the most correlated inputs (as in the fourth set)
provides a small boost to 66%. The best set of features
was the fifth, giving 68% accuracy. This combination is
not necessarily apparent from looking at correlation, which
suggests correlation is not the only factor when applying
SOM. Increasing the number of features (as in the fifth or
seventh sets) has little impact and can even decrease accuracy,
implying no useful information is being added. For k-means,
some sets reduce accuracy by nearly 20%; the use of wheel
angular velocity and yaw rate appears to confuse the KM
algorithm. For AE, different sets have a negligible impact on
performance. This implies the algorithm is robust but could
be limited in its ability to leverage additional information
besides motor current. To obtain final results, the best
discovered input set for each algorithm was used. (Note,
however, that more optimal sets may exist that were not tested
here.)

Table 2. Classification accuracy for different inputs.

Sensor Inputs Wheel SOM KM AE
10, 11, 12, 19 Left rear 0.608 0.479 0.642
10, 11, 12, 19 Left front 0.617 0.481 0.646
10, 11, 12, 19 All 0.640 0.630 0.660
13, 16, 20, 21 All 0.658 0.630 0.654
9, 10, 11, 13, 18, 21 All 0.670 0.491 0.675
9, 10, 13, 21 All 0.678 0.449 0.667
8, 9, 13, 16, 20, 21 All 0.659 0.461 0.671
13, 20 All 0.598 0.630 0.655

Classification Accuracy

The accuracy of each algorithm for near-optimal parameters
is displayed in Figure 4. The SOM method consistently gives
the best classification accuracy, regardless of velocity or the
number of slip classes. The KM method is consistently worst,
while the AE method lies between them. For the easiest
classification problem of 0.25 m/s with two classes, SOM

4

Figure 4. Average algorithm accuracy for different
[velocity, # of classes] sets. Errors bars show the maximum

and minimum accuracy over ten runs of the algorithm.

gives 97% accuracy. For the hardest problem of 0.10 m/s with
ten classes, SOM gives 53% accuracy. The differences in
accuracy between each method are more apparent with lower
velocities and/or more classes.

Classification accuracy is almost always better at higher
velocities. Much of the input data is drawn from IMUs,
which measure vibrations in the chassis. These vibrations
are largest at high velocities, whereas at low velocities, they
are obscured by noise. Larger numbers of classes are also
more challenging; data points are more likely to lie near a
class boundary, making it difficult for the algorithm to assign
a class with certainty.

Even at low, rover-like velocities (e.g. 0.10 m/s), the com-
bination of unsupervised machine learning with propriocep-
tive sensing appears adequate for slip estimation. For pure
immobilization detection (i.e. two slip classes), the >90%
accuracy of SOM is comparable to or better than many
previously-demonstrated techniques. In the ten-class case,
which approaches a continuous slip estimate, SOM is able
to classify slip with 53-71% accuracy. ‘Adjacent’ accuracy -
i.e. classification into the correct class or an adjacent class -
rises to 93%. This provides a great deal of information about
the current slip state of the vehicle which could, for instance,
be employed as part of a traction control system.

Due to random initialization procedures and cross-validation
partitioning, outcomes are not fixed from trial to trial. The
SOM algorithm is the most consistent, followed by the au-
toencoder, followed by k-means. In certain cases k-means
possesses extremely high variability, due to the random way
in which clusters are initialized and how they move as subse-
quent inputs are processed. For this reason, SOM is preferred.

Figure 5 displays ground truth slip with each algorithm’s
estimated slip class. In the first case (0.10 m/s), the KM and
AE algorithms produce a less variable slip estimate with very
few instances of medium slip. The SOM algorithm detects
more instances of medium slip, resulting in slightly more
accuracy. In the second case (0.25 m/s), SOM is again more
likely to pick up small slip variations, more closely following
the rover’s actual slip behavior.

Figure 6 presents confusion matrices for the case of 0.10 m/s
and three slip classes, using class boundaries of [0, 0.2, 0.5,
1] (left) and [0, 0.3, 0.6, 1] (right). For the default [0, 0.2,
0.5, 1] case, several strengths and weaknesses become evident

Figure 5. Estimated slip vs ground truth slip.

for each algorithm. When looking at correct responses,
the SOM algorithm is most optimal for low and high slip,
while k-means is optimal for medium slip. When looking at
incorrect responses, SOM is very likely to incorrectly classify
medium slip as high slip. This is not entirely negative; from
a safety perspective, overestimating slip is acceptable and
would result in more cautious (but slower) driving. KM is
similarly likely to classify medium slip as high slip. However,
it is by far the least accurate algorithm when classifying low-
slip cases. The autoencoder is least accurate for medium slip
cases, and again tends to overestimate slip.

Slight changes to class boundaries have a strong impact.
For the [0, 0.3, 0.6, 1] case, each algorithm observes a 4-
6% accuracy loss. This is due to a 20-30% increase in
mis-classification of medium slip points as high slip points.
Setting the division between medium and high slip at s = 0.6
does not provide as strong a delineation of the medium/high
slip transition region. Class divisions should thus be chosen
intelligently, with input from how well rover sensors can
distinguish between certain slip levels.

Algorithm Tuning

Figure 7 presents differences in accuracy between the worst
and best sets of parameters for each unsupervised algorithm.
The autoencoder is generally the most sensitive, with accu-
racy losses of up to 25%. SOM is least sensitive, except
for the case of ten slip classes. Note that while k-means can
observe large variations between trials (Figure 4), it does not
observe as much improvement on average.

Care should be taken to choose parameters that ensure op-
timal performance. For each algorithm, the most important
parameters were found to be:

• SOM
1. Map size M (up to 13% improvement). Larger maps

are useful for lower velocities and/or more classes, allowing

5

Figure 6. Confusion matrices for 0.10 m/s and 3 classes.
The left three matrices use class boundaries [0, 0.2, 0.5, 1],

while the right three matrices use [0, 0.3, 0.6, 1].

finer delineation of nearby slip clusters. Maps between
20x20 and 30x30 are recommended. Note that computational
requirements increase according to M2.

2. Choice of inputs (up to 8% improvement).
3. Size of neuron class filter Fnc (up to 4% improvement).
Fnc = 5 avoids both outliers and excessive homogeneity.

• KM
1. Choice of inputs (up to 18% improvement).
2. Choice of distance function (up to 15% improvement).

Either L1- or L2-norm functions are recommended.
3. Length of input filter Fin (up to 4% improvement).

Taking a longer period of sensor data into account generally
improves accuracy, though also introduces a delay. A length
between 1-3s is recommended.

• AE
1. Number of neurons nh (up to 12% improvement). Ad-

ditional neurons are useful for lower velocities and/or more
classes, allowing finer delineation of data features. 50-100
neurons in each layer is recommended. Note that computa-
tional requirements increase linearly with nh.
2. Choice of transfer function (up to 10% improvement). A

linear transfer function is recommended.
3. Choice of loss function (up to 5% improvement). Mean

squared error is recommended.
4. Sparsity proportion Sp (up to 5% improvement). There

Figure 7. Accuracy improvement of each algorithm for
different [velocity, # of classes], using the worst vs. best

parameters that were found.

are many more neurons than input dimensions, and more
sparsity (e.g. Sp = 0.01) ensures that neurons specialize by
only activating for a small number of training inputs.

In general, we desire the rover to stop as soon as possible after
detecting consistently high slip, which places a premium on
faster response times and filters. Accuracy did not signifi-
cantly increase with filters longer than 2s.

5. CONCLUSIONS
This study extends recent investigations into using machine
learning to estimate wheel slip of a planetary exploration
rover, by combining unsupervised learning with propriocep-
tive sensing. Three unsupervised algorithms – self-organizing
maps, k-means clustering, and autoencoding – are trained
to classify wheel slip into discrete classes. This presents
several advantages when compared to many previous ap-
proaches: the algorithms are independent of terrain features
or lighting, do not require estimation of vehicle or terrain
parameters, are applicable across a range of velocities and
inclinations, and rely only on commonly-available sensors.
The algorithms themselves are generic and can independently
train to detect slip for different terrain, environmental and
vehicular conditions. The use of proprioceptive data ensures
less computational complexity than VO-based methods.

During forward driving along a sandy incline between 0.10-
0.25 m/s, self-organizing maps demonstrated the best accu-
racy in the two-class embedding detection case (93-97%)
and the three-class case (87-93%). At higher velocities,
71% accuracy is displayed for the ten-class case (rising to
93% if adjacent classes are considered correct). From an
accuracy perspective, SOM is optimal, regardless of velocity
or the number of slip classes. It is also the most consistent
over repeated training runs. It did, however, require the
most processing time and memory, making it less suited to
computationally-limited rovers. K-means is generally not
recommended. Although it was by far the fastest algorithm,
it faces a significant 5-30% accuracy loss compared to SOM.
Autoencoders lie at a midpoint in performance, with accuracy
2-10% worse than SOM. Nevertheless the flexibility with
which such networks can be structured and layered may allow
further improvements.

Choice of sensor inputs remains crucial. A combination
of IMU, encoder and motor current measurements proved
effective, though the best input set differed between algo-

6

rithms and was not necessarily dependent on maximum slip
correlation. Utilizing mean readings from multiple sensors
is preferred for more consistent slip detection. However,
classification ability is affected by many related factors, such
as sensor placement on the vehicle; the structure, material,
and weight distribution of the chassis; and terrain and en-
vironment parameters, which were not investigated in detail
here.

The primary limitation on the results stems from the field
trial data, which consisted of ten forward drives along sandy
terrain and up a slope. This is a very narrow test case and
ideally, the data would cover more terrain types over a longer
driving period, to provide more examples of how low slip and
high slip manifest. It is perhaps realistic to train a rover on
limited data – since this may be necessary at the start of a real
mission – but for assessing algorithm behavior in different
terrains and the overall usefulness of the ML approach, more
test data would be valuable.

Furthermore, the algorithms (as set up in this paper) use
inputs from all wheels simultaneously. They thus cannot
tell which individual wheels are slipping or how wheels
are differently affected. It must also be noted that while
each algorithm is unsupervised, some supervision is needed
to associate SOM/KM clusters or AE features with slip
classes. However, a relatively short period of labelled data
is enough to enable classification – much less than what a
fully-supervised algorithm would require.

Future work will explore some of these questions, implement-
ing unsupervised ML across larger data sets and determining
its accuracy when more varied conditions and scenarios are
taken into account. Additional algorithms such as deep
belief networks will be considered, as well as additional
sensor types – for example, lower-noise sensors to improve
slip estimation at low velocities. More investigation is also
required into the processing and storage requirements of
unsupervised algorithms, given the computationally-limited
nature of rovers, with comparison to other prominent methods
such as VO. Ultimately, unsupervised ML methods will be
implemented on planetary rover hardware to further assess
their suitability for robust, real-time slip estimation.

ACKNOWLEDGMENTS
The authors wish to acknowledge ProtoInnovations, LLC and
MIT for assisting with the field trial data analyzed in this
report.

REFERENCES
[1] NASA Jet Propulsion Laboratory, “Spirit Updates,”

2009. [Online]. Available: mars.jpl.nasa.gov/mer/
mission/status spiritAll 2009.html, Accessed on: Sep.
18, 2018.

[2] NASA Jet Propulsion Laboratory, “Opportunity
Updates,” 2005. [Online]. Available: mars.nasa.gov/mer/
mission/status opportunityAll 2005.html, Accessed on:
Sep. 18, 2018.

[3] NASA Jet Propulsion Laboratory, “NASA’s Curiosity
Rover Adjusts Route Up Martian Mountain,” 2015.
[Online]. Available: jpl.nasa.gov/news/news.php?
feature=4596, Accessed on: Sep. 18, 2018.

[4] NASA Jet Propulsion Laboratory, “Breaks Observed

in Rover Wheel Treads,” 2017. [Online]. Available:
jpl.nasa.gov/news/news.php?feature=6785, Accessed on:
Sep. 18, 2018.

[5] J. Y. Wong, Theory of Ground Vehicles, 4th ed. Hoboken,
NJ, USA: Wiley, 2008.

[6] K. Iagnemma and S. Dubowsky, Mobile Robots in Rough
Terrain. Estimation, Motion Planning, and Control
with Application to Planetary Rovers. Berlin, Germany:
Springer, 2004.

[7] A. Angelova, L. Matthies, D. Helmick and P.
Perona, “Learning and prediction of slip from visual
information,” J. Field Robotics, vol. 24, no. 3, pp.
205-231, Mar. 2007.

[8] R. Gonzalez and K. Iagnemma, “Slippage estimation and
compensation for planetary exploration rovers. State of
the art and future challenges,” J. Field Robotics, vol. 35,
no. 4, pp. 564-577, Jun. 2018.

[9] R. Ambrose et al., “NASA Technology Roadmaps -
TA4: Robotics and Autonomous Systems,” NASA,
Washington D.C., 2015.

[10] K. Iagnemma and C. C. Ward, “Classification-based
wheel slip detection and detector fusion for mobile robots
on outdoor terrain,” Auton. Robots, vol. 26, no. 1, pp.
33-46, Jan. 2009.

[11] C. C. Ward and K. Iagnemma, “A dynamic-model-based
wheel slip detector for mobile robots on outdoor terrain,”
IEEE Trans. Robot., vol. 24, no. 4, pp. 821-831, Jul.
2008.

[12] E. Lakdawalla, “Curiosity Update, Sols 671–696:
Out of the Landing Ellipse, into Ripples and Pointy
Rocks,” 2014. [Online]. Available: planetary.org/
blogs/emilylakdawalla/2014/07241401-curiosity-update-
sols-671-696.html, Accessed on: Sep. 18, 2018.

[13] G. Reina, L. Ojeda, A. Milella and J. Borenstein,
“Wheel slippage and sinkage detection for planetary
rovers,” IEEE/ASME Trans. Mechatronics, vol. 11, no.
2, pp. 185-195, Apr. 2006.

[14] L. Matthies et al., “Computer vision on Mars,” Int. J.
Comput. Vis., vol. 75, no. 1, pp. 67-92, Oct. 2007.

[15] G. Reina, G. Ishigami, K. Nagatani and K. Yoshida,
“Odometry correction using visual slip angle estimation
for planetary exploration rovers,” Adv. Robot., vol. 24, no.
3, pp. 359-385, Mar. 2010.

[16] M. Maimone, Y. Cheng and L. Matthies, “Two years
of visual odometry on the Mars Exploration Rovers,” J.
Field Robot., vol. 24, no. 3, pp. 169-186, Mar. 2007.

[17] R. Gonzalez, D. Apostolopoulos and K. Iagnemma,
“Slippage and immobilization detection for planetary
exploration rovers via machine learning and
proprioceptive sensing,” J. Field Robot., vol. 35,
no. 2, pp. 231-247, Mar. 2018.

[18] M-R. Bouguelia, R. Gonzalez, K. Iagnemma and S.
Byttner, “Unsupervised classification of slip events for
planetary exploration rovers,” J. Terramechan., vol. 73,
no. 10, pp. 95-106, Oct. 2017.

[19] R. Gonzalez, M. Fiacchini and K. Iagnemma, “Slippage
prediction for off-road mobile robots via machine
learning regression and proprioceptive sensing,” Robot.
Auton. Syst., vol. 105, no. 7, pp. 85-93, Jul. 2018.

[20] R. Gonzalez and K. Iagnemma, “Soil embedding
avoidance for planetary exploration rovers,” The 13th
ISTVS European Conf., Rome, Italy, 2016.

7

[21] T. Kohonen, “Essentials of the self-organizing map,”
Neural Networks, vol. 37, no. 1, pp. 52-65, Jan. 2013.

[22] K. Obermayer and T. Sejnowski, Self-Organizing
Map Formation: Foundations of Neural Computation.
Cambridge, MA, USA: MIT Press, 2001.

[23] I. Goodfellow, Y. Bengio and A. Courville, Deep
Learning. Cambridge, MA, USA: MIT Press, 2016.

[24] B. A. Olshausen and D. J. Field, “Sparse coding with
an overcomplete basis set: a strategy employed by V1,”
Vision Research, vol. 37, no. 23, pp. 3311-3325, Dec.
1997.

[25] C. M. Bishop, Pattern Recognition and Machine
Learning. Berlin, Germany: Springer, 2006.

[26] Advanced algorithms and controls for superior robotic
all-terrain mobility, ProtoInnovations LLC and MIT,
Pittsburgh, PA, 2018.

[27] D. N. Reshef et al., “Detecting novel associations
in large datasets,” Science, vol. 334, no. 6062, pp.
1518-1524, Dec. 2011.

BIOGRAPHY[

Justin Kruger received B.S. degrees in
physics and mechatronics engineering
from the University of Western Australia
in 2016, and is studying an M.S. degree
in aerospace engineering at Stanford
University. He attended the NASA
Ames International Internship program
in 2018. His current research activities
are focused on enhanced spacecraft
autonomy and formation flying.

Arno Rogg received a M.S. in
microengineering from the Swiss Institute
of Technology of Lausanne (EPFL) in
2016. He is currently working at NASA
Ames Research Center in the Intelligent
Robotics Group. His work focuses on
planetary rover research & development
with a focus on rover mobility in difficult
terrains and high reliability systems
integration.

Ramon Gonzalez is the founder
and CEO of robonity a worldwide
tech startup. He has performed
postdoctoral research in the Robotic
Mobility Group at the Massachusetts
Institute of Technology (3 years), and
has been a visiting researcher at the
Autonomous Systems Lab (ETH Zurich,
Switzerland) and the University of
Seville (Spain). He holds a Computer

Science Engineering degree and a Ph.D. in mobile robotics
from the University of Almeria (Spain). He has also worked
at the University of Zaragoza (Spain) as a PhD Assistant.
He is author of the monograph Autonomous Tracked Mobile
Robots in Planar Off-Road Conditions (Springer, 2014).
His main research interests include: modelling, localization
and motion control of mobile robots and autonomous
vehicles in outdoor conditions; terrain classification and
characterization; computer vision and AI; and geostatistics

applied to mobile robotics. He has received several awards
including the Gold Medal of Andalucia (2017). Ramon
currently serves on the editorial board of the Journal of
Terramechanics.

8

